“夯实基础 拔出高度”之五
(总分84分)
班级 学号 姓名
一、填空题(每小题4分,共40分)
1.比较大小:2 3(填“>”、“=”或“<“).
2.山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为 .
3.请你写出一个有一根为1的一元二次方程: . A B 4.计算:123= . 1 C
D ,A40°,5.如图所示,A、B、C、D是圆上的点,170°
(第5题) 则C 度.
6.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.
7.如图,△ABC与△ABC是位似图形,且顶点都在格点上,则位似中心的坐标是 .
y
11 A 10 9 8 7 6 5 A A B D 4 C
3 B C 2 E O 1
O 1 2 3 4 5 6 7 8 9 1 11 12 x B C
(第8题)
(第7题) 8.如图,ABCD的对角线AC、BD相交于点O,点E是CD的中点,△ABD的周长
为16cm,则△DOE的周长是 cm. 9.若反比例函数的表达式为y
3
,则当x1时,y的取值范围是 . x
10.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中
所贴剪纸“○”的个数为 .
„„
(1)
(2)
(第10题)
- 1 -
(3)
„„
吴兴实验中学数学组
二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每小题3分,共24分) 11.下列计算正确的是( )
A.aaa B.2623236C.3x·2x6x
12.反比例函数y
k的图象经过点2,3,那么k的值是( ) x32A. B. C.6 D.6
232
D.π31
01x2≥113.不等式组的解集在数轴上可表示为( )
3x18 A. B. 0 1 2 3 4 0
C. D. 0 1 2 3 4 0 1 2 3 4 1 2 3 4 14.解分式方程
1x12,可知方程( ) x22xA.解为x2 B.解为x4 C.解为x3 D.无解
15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的
个数是( )
主视图 左视图 俯视图
(第15题)
A.5 B.6 C.7 D.8 16.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,
AB2,OD3,则BC的长为( )
A.
2 3CBB.
3 2C.m 3 2n D.
2 2O
D An n (1) (2)
(第17题) (第16题) 17.如图(1),把一个长为m、宽为n的长方形(mn)沿虚线剪开,拼接成图(2),
成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A.
mn
2
B.mn C.
- 2 -
m 2 D.
n 2吴兴实验中学数学组
AB的垂 ,BC3,AC4,18.如图,在Rt△ABC中,ACB90°直平分线DE交BC的延长线于点E,则CE的长为( )
A.
3725 B. C. D.2
26
A
D B E
C (第18题)
三、解答题(本题共20分) 19.(每小题5分,共15分)
(1)计算:x32x1x2
(2)化简:x22xx242x2
(3)解方程:x22x30
吴兴实验中学数学组
6- 3 -
20.(本题5分)已知每个网格中小正方形的边长都是1,图1
中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成. (1)填空:图1中阴影部分的面积是 (结果保留π); (第20题 图1)
(2)请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计 一个完整的花边图案(要求至少含有两种图形变换).
(第20题 图2)
吴兴实验中学数学组
- 4 -
提高正确率之五 参
一、选择题(每小题4分,共40分)
1.> 2.7.39310 3.答案不唯一,如x1 4.3 5.40 6.210 7.(9,0) 8.8 9.3y0 10.3n2
二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每小题3分,共24分) 题 号 11 12 13 D 14 D 15 B 16 A 17 A 18 B 答 案 D C 三、解答题(本题共20分)
1022219.(1)解:原式=x6x9x3x2 ········································································· (2分)
=x6x9x3x2 ············································································· (3分) =9x7. ······································································································· (5分) (2)解:原式=
22xx22 ·················································································· (2分) x2x2x2x2 ································································································· (3分) x2x22 =
=1.··················································································································· (5分)
2(3)解:移项,得x2x3,配方,得x14, ························································· (3分)
∴x12,∴x11 ············································································ (5分) ,x23. (注:此题还可用公式法,分解因式法求解,请参照给分) 20.解:(1)π2; ·················································································································· (2分)
(2)答案不唯一,以下提供三种图案. (第20题 图2) ··········································· (5分)
吴兴实验中学数学组 - 5 -