ModelsandAlgorithmsforStochasticOnline
Scheduling
NicoleMegow1,MarcUetz2andTjarkVredeveld2
TechnischeUniversit¨atBerlin,Institutf¨urMathematikStrassedes17.Juni136,10623Berlin,Germany
nmegow@math.tu-berlin.de
MaastrichtUniversity,DepartmentofQuantitativeEconomicsP.O.Box616,6200MDMaastricht,TheNetherlands
{m.uetz,t.vredeveld}@ke.unimaas.nl
1
2
Abstract.Weintroduceamodelfornon-preemptiveschedulingunderuncertainty.Inthismodel,wecombinethemaincharacteristicsofonlineandstochasticschedulinginasimpleandnaturalway.Jobprocessingtimesareassumedtobestochastic,butincontrasttotraditionalstochas-ticschedulingmodels,weassumethatjobsarriveonline,andthereisnoknowledgeaboutthejobsthatwillarriveinthefuture.Theparticularsettingweanalyzeisparallelmachinescheduling,withtheobjectivetominimizethetotalweightedcompletiontimesofjobs.Weproposesim-ple,combinatorialonlineschedulingpoliciesforthatmodel,andderiveperformanceguaranteesthatmatchthecurrentlybestknownperfor-manceguaranteesforstochasticandonlineparallelmachinescheduling.ForprocessingtimesthatfollowNBUEdistributions,weimproveuponpreviouslybestknownperformanceboundsfromstochasticscheduling,eventhoughweconsideramoregeneralsetting.
Keywords.Stochasticscheduling,onlineoptimization,averagecomple-tiontime,policies.
1Introduction&Model
Weconsidertheclassicalproblemofnonpreemptiveschedulingonsingleandidenticalparallelmachinestominimizethesumofweightedcompletiontimesunderuncertainty.
Inordertocopewithuncertaintyaboutthefuture,therearetwomajorframe-worksinthetheoryofmachinescheduling,oneisthestochasticschedulingmodel,theotheronlineschedulingmodel(s).Themaincharacteristicofstochas-ticscheduling,incontrasttodeterministicmodels,isthefactthattheprocessingtimesofjobsaresubjecttorandomfluctuations,andtheactualprocessingtimes
ResearchpartiallysupportedbytheDFGResearchCenterMatheon”Mathe-maticsforkeytechnologies”.Afullversionofthisabstractcanbefoundathttp://www.math.tu-berlin.de/˜nmegow/muv05sos.pdf.
Dagstuhl Seminar Proceedings 05031
Algorithms for Optimization with Incomplete Informationhttp://drops.dagstuhl.de/opus/volltexte/2005/110
2N.Megow,M.Uetz,T.Vredeveld
becomeknownonlyuponcompletionofthejobs.Itisgenerallyassumed,though,thattherespectiverandomvariables,oratleasttheirfirstmoments,areknownbeforehand.Inonlinescheduling,theassumptionisthattheinstanceispre-sentedtothescheduleronlypiecewise.Dependingontheprecisemodel,jobsarearrivingeitherone-by-one(sequencemodel),orovertime(time-stampmodel).Thejobcharacteristicssuchasweightandprocessingtimeareusuallydiscloseduponarrivalofthejob,anddecisionsmustbemadewithoutanyknowledgeofthejobstocome.
Inthispaper,wesuggestamodelthatgeneralizesboth,thestochasticschedulingmodelaswellastheonlineschedulingmodels.WecallittheStochasticOnlineScheduling(Sos)model.Likeinonlinescheduling,weassumethattheinstanceispresentedtotheschedulerpiecewise,andnothingisknownaboutjobsthatmightarriveinthefuture.Onceajobarrives,likeinstochasticscheduling,weassumethatitsweightandfirstmomentofitsprocessingtimearedisclosed,buttheactualprocessingtimeremainsunknownuntilthejobcompletes.
2Policies&Performance
Wederiveworstcaseperformanceguaranteesfortheexpectedperformanceofsimple,combinatorialonlineschedulingpoliciesforthestochasticonlineschedul-ingmodelonasinglemachineandonidenticalparallelmachines,respectively.Fortheanalysisofpoliciesrespectingreleasedates,werestrictourselvestoran-domvariablesthatwecallδ-NBUE.ThisisageneralizationofNBUErandomvariables.
Definition1(δ-NBUE).Anon-negativerandomvariableXisδ-NBUEif,forδ≥1,
E[X−t|X>t]≤δE[X]forallt≥0.OrdinaryNBUEdistributionsarebydefinition1-NBUE.
Inourperformanceanalysis,wecruciallyexploitthefactthatlowerboundson
theexpectedvalueofanoptimalpolicyknownfromstochasticschedulingcarryovertotheSossetting.Weutilizethefollowingohring,SchulzlowerboundbyM¨OPTandUetz[1]ontheexpectedperformanceEZofanoptimalstochasticschedulingpolicy.
Lemma1(M¨ohringetal.[1]).ForanyinstanceofP|rj|E[wjCj],wehavethat
E[Zopt]≥
j
wj
k∈H(j)
E[Pk](m−1)(∆−1)
−wjE[Pj],m2mj
where∆boundsthesquaredcoefficientofvariationoftheprocessingtimes,that
2
is,Var[Pj]/E[Pj]≤∆foralljobsj=1,...,nandsome∆≥0.
StochasticOnlineScheduling
2.1
Stochasticonlineschedulingonasinglemachine
3
Forthesinglemachineproblem1|rj|E[wjCj]inthestochasticonlineschedul-ingmodelweconsiderthefollowingpolicywhichwasproposedforparallelma-chinesbyMegowandSchulzin[2]inthedeterministiconlinesetting.
α-Shift-WSEPT
Modifythereleasedaterjofeachjobjsuchthatrj=max{rj,αE[Pj]},forsomefixedα>0.Atanytimet,whenthemachineisidle,startthejobwithhighestpriorityintheWSEPTorder(i.e.,thejobwithhighestratioofweighttoexpectedprocessingtime)amongallavailablejobs,respectingthemodifiedreleasedates.
Theorem1.Theα-Shift-WSEPTalgorithmisa(δ+2)-approximationfor
theSosproblem1|rj|E[wjCj],forδ-NBUEprocessingtimes.Thebestchoiceoftheparameterαisα=1.
ForNBUEdistributedprocessingtimesthisresultmatchesthebestknownLPbasedperformanceboundderivedbyM¨ohringet.al[1]forstochasticscheduling.Intheonlinesetting,thebestpossiblealgorithmisexactly2-competitivewhichisshownin[3],[4].2.2
Stochasticonlineschedulingonparallelmachines
Intheparallelmachineenvironmentweapplythefollowingsimple,combinato-rialschedulingpolicythatwecallMinIncrease.Weschedulejobsthathavebeenassignedtothesamemachineintheα-Shift-WSEPTorder.Theonlinedecisionsonjob-to-machineassignmentsaremadeasfollows:assoonasajobispresented,weassignittothatmachinewhereitcausestheminimalincreaseintotalexpectedobjectivevalue,giventhejobsoneachmachinewouldbesched-uledinWSEPTorder(non-increasingratiosofweightoverexpectedprocessingtimes).Note,thatinordertoassignjobstomachines,wecompletelyignorere-leasedatesandinformationaboutrealprocessingtimeswhichcouldbeobservedfromtheschedule.
Theorem2.ConsiderthestochasticonlineschedulingproblemP|rj|E[wjCj].Giventhatallprocessingtimesareδ-NBUE,theMinIncreasepolicyisaρ–approximation,where
ρ=1+max{1+
δ(m−1)(∆+1),α+δ+}.α(2m)
2
Here,∆issuchthatVar[Pj]/E[Pj]≤∆foralljobsj.Inparticular,sinceall
processingtimesareδ-NBUE,weknowthat∆≤2δ−1intheaboveperformancebound.
4N.Megow,M.Uetz,T.Vredeveld
ForNBUEprocessingtimes,where√wecanchoose∆=δ=1,theapprox-2imationratioisminimal√forα=(5m−2m+1−m+1)/(2m),obtainingaratiooflessthan(5+5)/2−1/(2m)≈3.62−1/(2m),improvinguponthepreviouslybestknownapproximationratioof4−1/mfrom[1]forthestochas-ticproblem.Moreover,fordeterministicinstancesthisperformancematchesthecurrentlybestknowncompetitiveratioof3.28from[2]fordeterministiconlinescheduling.
Inthespecialsettingwhereallreleasedatesareequal,ourMinIncreasepolicyindeedchoosesforeachjobjthemachinewhereitcausestheleastincreaseintheexpectedvalue,giventhepreviouslyassignedjobs.Weproveaperformanceratioof
(∆+1)(m−1)1+
2m
whichmatchesexactlythecurrentlybestknownperformanceguaranteefortheclassicalstochasticsetting,whichwasderivedfortheperformanceoftheWSEPTrulein[1].TheWSEPTrule,however,requirestheknowledgeofalljobswiththeirweightswjandexpectedprocessingtimesE[Pj]attheoutset.
Finally,weremarkthattheMinIncreasepolicycanbeseenasderandomizedversionofapolicythatassignjobsuniformlyatrandomtooneofthemachines.
References
1.M¨ohring,R.H.,Schulz,A.S.,Uetz,M.:Approximationinstochasticscheduling:thepowerofLP-basedprioritypolicies.JournaloftheACM46(1999)924–942
2.Megow,N.,Schulz,A.S.:On-lineschedulingtominimizeaveragecompletiontimerevisited.OperationsResearchLetters32(5)(2004)485–490
3.Anderson,E.J.,Potts,C.N.:On-lineschedulingofasinglemachinetominimizetotalweightedcompletiontime.MathematicsofOperationsResearch29(2004)686–697
4.Hoogeveen,H.,Vestjens,A.P.A.:Optimalon-linealgorithmsforsingle-machinescheduling.InCunningham,W.H.,McCormick,S.T.,Queyranne,M.,eds.:Proceed-ingsoftheFifthConferenceonIntegerProgrammingandCombinatorialOptimiza-tionIPCO.Volume1084ofLectureNotesinComputerScience.,Berlin,Springer(1996)404–414