SingleImage:AGraphColoringProblem
KevinM.Lynch
DepartmentofMechanicalEngineering
NorthwesternUniversity2145SheridanRd.Evanston,IL60208USAEmail:kmlynch@northwestern.edu
TEL:847-467-5451FAX:847-491-3915
November2001
1
Abstract
Inourworkonroboticmanipulation,werequiredamethodfordeterminingtheorientationofamarkedspherefromasinglevisualimage.OursolutionutilizesfeaturesofdifferentcolorspaintedonthesphereattheverticesofthePlatonicsolids.Themainresultofthispaperistheminimizationofthenumberoffeaturecolorsneededtosolvethecorrespondenceproblem.Theminimizationofcolorsisagraphcoloringproblem.
IndexTerms—Graphcoloring,featurecorrespondence,Platonicsolids,surfacemarkings,sphereorientation.
1Introduction
Weareinterestedinthefollowingproblem:Givenasphereofknownradiusataknownlocationwithanunknownorientation,paintthespherewithfeaturepointssotheorientationofthespherecanbedeterminedfromasinglevisualimage.
Thisproblemaroseinourresearchongrasplessroboticmanipulation,suchasthrowing,catch-ing,andcontrollingtheorientationofarollingball.Forfeedbackcontroloftheorientationofaball,wedecidedtopainttheballwithfeaturepointsandusevisionfeedbackfromasinglecam-era[3].Assumethefeaturesaredistinguishedbytheirdifferentcolors.(Differentshapesorsizeswouldalsowork.)Thenthequestionis:Whereshouldthefeaturepointsbeplacedonthesphere,andhowmanydifferentfeaturecolorsarenecessary?
Toanswerthisquestion,wemakethefollowingthreeobservations.(1)Assumingacalibratedcameraandaknownradiusandlocationofthecenterofthesphere,thespatiallocationofavisiblefeaturepointcanbedeterminedbysimplyintersectingtheline-of-sightoftheimagelocationwiththeknownspheresurface.(2)Thespatiallocationsoftwofeaturepointsaresufficienttodeterminetheorientation:onepoint(alongwiththeknowncenterpointofthesphere)fixesanaxisofrotationofthesphere,andtheseconddeterminestheamountofrotationaboutthataxis.Ifmorethantwopointsarevisible,standardalgorithms(e.g.,[4])canbeusedtofindthebest-fitorientationtothe
2
data.1(3)Ifeachfeaturepointhasauniquecolor,thecorrespondenceproblem(matchingfeaturesinthemodeltotheobservedfeatures)istrivial.Therefore,ananswertothequestionistopaintthefeaturepointssoatleasttwopointsarevisibleforanyorientationofthesphere,andtogiveeachpointauniquecolor.
Ourinterestisinminimizingthenumberoffeaturecolorsnecessarytosolvethecorrespon-denceproblem.Iffewercolors(orshapesorsizes)areneeded,thenthefeaturescanbemoreeasilydistinguishablefromeachother,increasingtherobustnessofthesystemtoproblemssuchasvaryinglightingconditions,whichchangestheperceivedcolorofthefeatures.Inthiswork,weminimizethenumberoffeaturecolorsbyexploitingtheinformationintheknownspatialre-lationshipofthefeaturepoints.Forinstance,aspheremayhavetwobluefeaturepoints,oneofwhichappearsnearred,yellow,andgreenfeatures,andoneofwhichappearsnearblack,orange,andpurplefeatures.Thenabluefeatureinanimagecanbedisambiguatedbythecolorsofitsneighboringfeatures.
Whilemanypatternsoffeaturesoverthespherecouldbeused,wechosetopaintthespherewithfeaturesattheverticesofoneofthefivemaximalinscribedPlatonicsolids(Figure1).Thisassuresequaldistributionoffeaturepointsoverthesphere.Treatingtheverticesandedgesofthepolyhedraasnodesandedgesofgraphs,weobtainthecorrespondencegraphsinFigure2.Defining
tobethenumberofverticesofthegraphs,wehave
forthetetrahedron(4faces),
fortheoctahedron(8faces),
forthecube(6faces),
fortheicosahedron(20
faces),andforthedodecahedron(12faces).Thecolors.
verticesofthecorrespondencegraph
arecoloredwith
Twoproblemsneedtobesolved:
(i)Findingthevisiblefeaturesubgraph.Manyofthefeaturepointswillbeoccluded,soonlyasubgraphofthefullcorrespondencegraphwillbevisible.Thevisiblesubgraphdependsontheorientationoftheballandthedistanceoftheballfromthecamera.
1
Inthispaper,wearenotconcernedwiththeaccuracyorerrorpropertiesofanyparticularfittingalgorithm.
3
dodecahedroncubetetrahedron
octahedron
icosahedron
Figure1:ThefivePlatonicsolids,andmarkingaspherewithfeaturepointsattheverticesofthemaximalinscribedcube.
52031tetrahedron11727384591010171283491318141926320451611610512614037octahedron
cube1510icosahedrondodecahedronFigure2:ThecorrespondencegraphsforthePlatonicsolids.
(ii)Uniquelycoloringthesubgraphs.Insteadofuniquelycoloringeachfeaturepoint,itisonly
necessarytouniquelycoloreachuniquevisiblesubgraphinthefullgraphtosolvethecor-respondenceproblem.Wewouldliketominimizethenumberofcolorsneededtosolvethis
4
881212122020202020
visiblerotationalsubgraphsymmetries
121
3212151
uniqueinstancesincoloringsfullgraph
81212
lowerbound
–6–
4
–7–5
20302030601260
34––9104532
33
Table1:Fortheviewinganglesindicated,theimageisguaranteedtocontainthesubgraphsshown.“Rotationalsymmetries”indicatesthenumberofindistinguishableorientationsofthesub-graph.Thenumberofuniquesubgraphcoloringsaregiven,ifcolorsareused,aswellasthenumberofinstancesofthesubgraphinthefullgraph.Basedonthese,itisstraightforwardtoderivealowerboundon.Therightmostcolumnrepresentsthemaincontributionofthepaper—theminimumnumberofdifferentcolorsneededtosolvethecorrespondenceproblem.Inmostrows,isgreaterthanthelowerboundduetocoloringconstraintsimposedbythetopologyofthecorrespondencegraph.
problem.
Thesecondproblemisagraphcoloringproblem.Inthispaper,wegivetheminimumnumberofdifferentfeaturecolors
neededtosolvethecorrespondenceproblemasafunctionofthe
Platonicsolidusedtogeneratethefeaturesandthevisualfieldofthecamera(howmuchofahemisphereisvisible).Arelatedproblemingraphtheoryisfindingthelocaldistinguishingnumberofacyclicgraph:theminimumnumberofcolorssuchthattherearenotwoisomorphicsubgraphs(ofaspecifiedsize)inthefullgraph[1].
ThemainresultsofthispaperaresummarizedinTable1.Therestofthepaperdescribesthecontentsofthetable.
Ourresultsweredevelopedfortrackingtheorientationofarotatingballbeingmanipulatedbyarobot.Acloselyrelatedproblemisthatofdesigninganabsoluteencoderforaspherical
5
dαRFigure3:Thevisualfieldofthecamera.
motor[2,5].Scheinermanetal.[6]haveproposedamethodfordeterminingtheorientationofarandomlypaintedblack-and-whitesphereusingmanyphotoreflectivesensorsscatteredaroundtheoutsideofthesphere,eachreturningavalueof0or1indicatingwhetherthesensorseesblackorwhitesurface.Basedonpreciseknowledgeofhowthespherewaspainted,theyproposeaniterativeoptimizationmethodthatquicklyconvergestoanestimateoftheorientationofthesphere.Intheirexperiments,errorwasontheorderof2degreesfor50sensorsand0.5degreesfor200sensors.
2VisibleSubgraphs
Apinholecameraisplacedadistancevisibleangleofthespherethatisvisible.As
fromthecenteroftheradius
sphere(Figure3).The
indicatestheamountofthehemisphere
increases,morefeaturesbecomevisible.
Table1indicatesthevisiblesubgraphtopology(vertexfeaturesandimpliededges)ascreasesforthecube,icosahedron,anddodecahedron.Thevaluesof
in-
giveninthetablearethe
minimumvaluesatwhichtheimageisguaranteedtocontainthegivensubgraphforanyorientationofthesphere.(Foranyparticularorientationofthesphere,morefeaturesmaybevisible.Thesub-graphsgiveninthetablearethosethatareguaranteedtobecommonforallsphereorientations.)Forboththetetrahedron(
)andtheoctahedron(
),thereisnoguaranteethatmorethan
onefeaturewillbevisibleintheimageforany
.Sinceatleasttwofeaturesarerequiredto
6
determinetheorientationofthesphere,wewillnotconsiderthetetrahedronoroctahedronfurther.ThevisiblesubgraphsarenotquitethesameasthevisiblefacesintheperspectiveaspectgraphsofthePlatonicsolids,asself-occlusionoccursforthespherewhereitdoesnotoccurforapolyhedron.
3Colorings
Iftheverticesofasubgrapharecoloredwith
colors,thesubgraphwillhave
unique
colorings,minusanyduplicatesduetosymmetry.Forinstance,ifthecolors1and2areusedtocolorthethreeverticesofanequilateraltriangle,thenthecolorings1-2-2,2-1-2,and2-2-1(rotatedversionsofeachother)areindistinguishable.(Theorientationofthesphereisnotknowninadvance;thisiswhatwearetryingtosolve.)Similarly,thecoloring1-1-1isnotavalidcoloring,sincetheverticesareimpossibletodistinguishfromeachother.ThenumberofuniquesubgraphcoloringsinTable1canbeobtainedbyanapplicationofBurnside’slemma.Thelowerboundon
inTable1isobtainedbyfindingthesmallestnumberofcolors
such
thatthenumberofuniquecoloringsofavisiblesubgraphisgreaterthanorequaltothenumberofsuchsubgraphsinthefullcorrespondencegraph.If
isgreaterthanorequaltothislower
bound,thenitmaybepossibletocolorthecorrespondencegraphsothateachsubgraphisdistinctlyrecognizableintheimage.
Coloringthefullgraphplacesstrongconstraintsonwhichuniquesubgraphcoloringscanbeused,however.Bycoloringonesubgraph,wehaveconstrainedthepossiblecoloringsofadjacentsubgraphs.Therefore,itisoftenthecasethattherequirednumberofcolorslowerbound.
InthesevenrelevantcasesinTable1,
islargerthanthe
isequaltothelowerboundinonecase,and
isone
greaterthanthelowerboundintheremainingsixcases.Forthreeofthesesixcases,theAppendixgivessimpleproofsthatthelowerboundisnotsufficient.Fortheremainingthreecases,wewrotecomputerprogramswhichenumeratedallpossiblecoloringsusing
equaltothelowerboundand
7
verifiedthatnoneuniquelycoloredallvisiblesubgraphs.Weareworkingonmoreconciselystatedproofsthatthelowerboundsdonotsufficeforthesethreecases.
Notethatthreeisthefewestnumberofcolorsthatallowthecorrespondenceproblem,forthedodecahedronwithatleastfiveverticesofafacevisible.Forthevaluesof
listedinTable1,wehavefoundcoloringsofthecorrespondencegraphs
thatsolvethecorrespondenceproblem.Someofthesecoloringscanbefoundsimplybyhand,andotherswerefoundbycomputerprograms.Allcoloringswereverifiedbycomputerprogramswhichcheckedthateachvisiblesubgraphwasuniquelycolored.Examplecorrespondencegraphcoloringsaregivenbelow,wheretheorderofthecolorscorrespondstothevertexassignmentsinthegraphsofFigure2.Cube(8vertices)
:7colors02314506
Icosahedron(12vertices)
:5colors221043132140:4colors321213201000
Dodecahedron(20vertices)
:10colors40123696917534820875:5colors41121302441300432203:3colors12012201211001212210
4Conclusion
Thespatialrelationshipofimagefeaturescanprovidevaluableinformationinsolvingthefeaturecorrespondenceproblem.InthispaperweusedthisinformationtofullysolvethecorrespondencegraphcoloringproblemforthespecialcaseofaspherepaintedwithfeaturesattheverticesofthePlatonicsolids.
8
Acknowledgments
ThisworkwassupportedinpartbyNSFgrantsIIS-9875469andIIS-9811571.ThankstoPrasunChoudhuryandMegLeefortheirimplementationoftheresultsofthispaper.
References
[1]C.ChengandL.Cowen,“Onthelocaldistinguishingnumbersofcycles,”DiscreteMathemat-ics,196(1-3):97–108,1999.
[2]G.S.ChirikjianandD.Stein,“Kinematicdesignandcommutationofasphericalstepper
motor,”IEEE/ASMETransactionsonMechatronics,4(4):342–353,Dec.1999.
[3]P.ChoudhuryandK.M.Lynch,“Rollingmanipulationwithasinglecontrol,”Conferenceon
ControlApplications,MexicoCity,Mexico,September2001.
[4]B.K.Horn,“Closedformsolutionofabsoluteorientationusingunitquaternions,”Journalof
OpticalSocietyofAmerica,4(4):629–2,1987.
[5]K.-M.LeeandC.-K.Kwan,“Designconceptdevelopmentofasphericalstepperforrobotic
applications,”IEEETransactionsonRoboticsandAutomation,7(1):175–181,Feb.1991.[6]E.Scheinerman,G.S.Chirikjian,andD.Stein,“Encodersforsphericalmotionusingdiscrete
opticalsensors,”inAlgorithmicandComputationalRobotics:NewDirections,B.R.Donald,K.M.Lynch,andD.Rus,eds.Natick,MA:A.K.Peters,2001.
Appendix
Lemma4.1.Fortheinscribedcube(cannotbesolvedwith
)withtwoverticesvisible,thecorrespondenceproblem
colors.
9
Proof.If
,thenatleasttwocolorsareusedtwice,oronecolorisusedthreetimes.Assume
twocolorsareusedtwice.Thetwoverticescolored0mustnotbeadjacenttoeachother,orelsetheywillnotbedistinguishablewhentheyaretheonlytwoverticesvisible.Thereforetheymustbeplacedatoppositecornersofthecube.Similarly,thetwoverticescolored1mustalsobeatoppositecornersofthecube.Inthiscase,theywillbothbeadjacenttoavertexcolored0,sothisisnotavalidcoloring.
Ifonecolorisusedthreetimes,twoverticeswiththesamecolorwillbeadjacent,whichisnotavalidcoloring.ThecorrespondenceproblemcannotbesolvedwithLemma4.2.Fortheinscribedicosahedron(
colors.
)withatriangle(threevertices)visible,thecolors.
correspondenceproblemcannotbesolvedwithProof.For
,thereare20possiblecoloringsofthevisiblesubgraphtrianglebyTable1.Since
thereare20instancesofthetriangleintheicosahedron,eachcoloringmustappearonceinthecorrespondencegraph.Thismeansthetriangles0-0-1,0-0-2,and0-0-3mustappear.Therefore,thegraphmustcontaintwoadjacentverticescolored0.Thisformsoneedgeoftwotriangles,andthethirdvertexofthesetwotrianglesmustbecolored1and2togetthetriangles0-0-1and0-0-2.Togetthetriangle0-0-3,another0mustbeplacedadjacenttooneofthefirsttwo0’s,sinceonlyoneofthefirsttwo0’scanappearinanewtrianglewithtwo0’s.However,a0adjacenttooneofthefirsttwo0’swillalsobeadjacenttothe1or2,resultinginanothertriangle0-0-1or0-0-2.ThecorrespondenceproblemcannotbesolvedwithLemma4.3.Fortheinscribedicosahedron(
colors.
)withadoubletriangle(fourvertices)visible,
thecorrespondenceproblemcannotbesolvedwith
colors.
Proofisbyenumerationofallpossiblecoloringsbycomputer.Lemma4.4.Fortheinscribeddodecahedron(denceproblemcannotbesolvedwith
)withtwoverticesvisible,thecorrespon-
colors.
10
Proof.If
,atleasttwocolorsmustappearthreeormoretimes.Assumethecolor0appears
threetimes.Thethree0’smustbeplacedsotheyarenotadjacenttoeachother,orelsetheywouldbeindistinguishablewhenonlytwoverticescolored0arevisible.Eachofthethreeverticescolored0musthavethreeuniquecolorsadjacent,sothateachofthepairsisdistinguishable.Thisimpliesnineotheruniquecolors,inadditiontothecolor0,sothecorrespondenceproblemcannotbesolvedwith
colors.
)withthreeverticesvisible,thecorrespon-
Lemma4.5.Fortheinscribeddodecahedron(denceproblemcannotbesolvedwith
colors.
Proofisbyenumerationofallpossiblecoloringsbycomputer.Lemma4.6.Fortheinscribeddodecahedron(
)withsevenverticesvisible(verticesofone
pentagonalfaceplustwoverticesofanadjacentface),thecorrespondenceproblemcannotbesolvedwith
colors.
Proofisbyenumerationofallpossiblecoloringsbycomputer.
11
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- obuygou.com 版权所有 赣ICP备2024042798号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务