您好,欢迎来到步遥情感网。
搜索
您的当前位置:首页不定积分练习

不定积分练习

来源:步遥情感网
第三章

§1.最简单的不定积分

不定积分

F(x)是它的原函数,1.不定积分的概念.若函数f(x)在区间(a,b)内有定义且连续,即当

则a2.不定积分的基本性质.

(a)d

∫f(x)dx=F(x)+C,

aA≠0);(c)∫Af(x)dx=A∫f(x)dx(A为常数,

[∫f(x)dx]=f(x)dx;

(b)∫dΦ(x)=Φ(x)+C;

3.最简积分表.

n+1

nxⅠ.∫xdx=+C(n≠-1).

n+1Ⅲ.∫dx2=arctanx+C,

-arccotx+C.1+xⅤ.∫dx=arcsinx+C,

1-x2-arccosx+C.

xxaⅦ.∫adx=+C(a>0,a≠1);exdx=ex+C.∫lna(d)∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx.

{{Ⅱ.∫dx=ln|x|+C(x≠0).

x||

Ⅳ.∫dx2=1ln|1+x|+C.

1-x2|1-x|

Ⅵ.∫dx=ln||x+x2±1||+C.

x2±1Ⅸ.∫cosxdx=sinx+C.

Ⅷ.∫sinxdx=-cosx+C.XIV.∫dx2=-cothx+C.sinhx4.积分的基本方法.(a)引入新变量法.若

Ⅹ.∫dx=-cotx+C.sin2xⅫ.∫sinhxdx=coshx+C.Ⅺ.∫dx=tanx+C.cos2xXIII.∫coshxdx=sinhx+CXV.∫dx2=tanhx+C.coshx则

∫f(x)=dx+F(x)+C,∫f(u)du=F(u)+C,

f(x)=f1(x)+f2(x),

式中u=φ(x)是连续可微函数.

(b)分项积分法.若则

(c)代换法.若f(x)连续,令

∫f(x)dx=∫f(x)dx+∫f(x)dx.

1

2

x=φ(t),

式中φ(t)及其导数φ′(t)皆连续,则得

1

(d)分部积分法.若u和v为x的可微函数,则

∫f(x)dx=∫f(φ(t))φ′(t)dt.

∫udv=uv-∫vdu.

1629.∫x2(5-x)dx.

4

1628.∫(3-x2)dx.

3

利用最简积分表,求下列积分:

1630.∫(1-x)(1-2x)(1-3x)dx.

32

aaaæ÷dx.1632.∫ç+2+3öèxxxø

1631.∫æ1-xödx.

èxø

2

1634.∫x-2x2+1dx.4x

31633.∫x+1dx.

x3

(1-x)1635.∫3dx.

xx1637.∫

1öç1-÷xxdx.1636.∫æ

x2øèx4+x-4+21638.∫dx.

x32x10.∫dx2.1-x(2x-33xx)dx.

2

12.∫1+x2+1-x21-x2

4dx.

14.∫(2x+3x)dx.

3xe16.∫x+1dx.e+1

13.∫2x1639.∫dx2.1+x2x11.∫2+3dx.x-1

4x2+1-x2-1x-1x+1x-12-515.∫dx.x

10dx.

18.∫1-sin2xdx(0≤x≤π).1650.∫tan2xdx.1654.证明:若1652.∫tanh2xdx.

19.∫cot2xdx.

17.∫(1+sinx+cosx)dx.1651.∫(asinhx+bcoshx)dx.

1653.∫coth2xdx.

∫f(x)dx=F(x)+C,

F(ax+b)+C(a≠0).∫f(ax+b)dx=1a求下列积分:1655.∫dx.

x+a1659.∫

1657.∫31-3xdx.

dx1658.∫1660.∫1656.∫(2x-3)dx.

10

51661.∫dx2.

2+3x2

(5x-2)52.

1662.∫dx2.

2-3x1-2x+x2dx.

1-xdx.2-5x1663.∫1665.∫(e2dx2

.

-x-+3ex-2x)dx.

1667.∫

dxsin2æ2x+π.

1671.∫è

1669.dx4ö

ø∫∫

[1sinh-cos(2xx.

+1)+cosh(2x-1)]dx.1672.coshdx2x.用适当变换被积函数的方法求下列积分:21674.∫xdx.

1676.∫∫13xdx-x2

-2x2.

1678.xdx1680.∫4+x2.

dx提示:dx∫(1+x)x

.x

=2dx.

1681.sin1x∙dxx2.

1683.∫dxxx2

.

-11685.∫xdx(x

2

-1)3.

21687.∫

dx(.x1+x)16.∫xe-x2

dx.

1691.∫dxex+e

-x.

1693.∫ln2x∫xdx.1695.sin5xcosxdx.1697.∫∫tansinxxdx+.

1699.3cos1700.(a)sin∫x-cosxa2sinsinx2xxcosdx.

+b2x2dx;(c)∫cosxcosx

1701.∫cos2xdx;

sin2dxx4cotx

.3

16.1666.∫∫x3-xdx2

.-2

(sin5sin5α)dx.

1668.∫1+dxcosx.1670.∫

1+dxsinx.1673.∫

sinhdx2.2x1675.∫x231+x3dx.

1677.∫xdx(1+x2)2.

1679.∫x3x8dx-2

.1682.∫

dx.xx2

+1

1684.

dx(.x

2

+1)321686.∫x2dx()2.

8x

3

+2731688.∫

dx).x(1-x1690.∫1692.2ex+dxex.1694.∫∫1dx+e2x

.

dxxln.∫cot∫xlnsin(lnxx)1696.dxdxcos3x.

1698..

x

(b)(d)∫∫sinxsinhcos2xdx;

1702.coshx∫2xdx.

sin2dxx+2cos2x

.

1703.∫dx.

sinx1705.∫dx.

sinhx1707.∫sinhxcoshxdx.

sinh4x+cosh4x

1709.∫arctan2xdx.

1+x1711.∫lnx+1+x21+x2()dx.

1704.∫dx.

cosx1706.∫dx.

coshxdx1708.∫.322

coshxtanhx

dx1710.∫.22(arcsinx)1-x2x1712.∫4+1dx.x+12x1713.∫4-1dx.x+1

n21ö1ö.ææç1+÷dx=dx-提示:2xøèxøè

4

xdx.1714.∫45

(x+1)1715.∫xdx.

1+xn+2

1717.∫cosxdx.

2+cos2xxx2∙31719.∫xxdx.9-4

用分项积分法计算下列积分:1721.(a)∫x2(2-3x2)dx;

2

1716.∫12ln1+xdx.

1-x1-xxcosxdx.1718.∫sin4sinx+cos4x

1720.∫

xdx1+x2+

10

(1+x)23.

1722.∫1+xdx.

1-x3

2

(b)∫x(1-x)dx.

2x1723.∫dx.1+x1724.∫xdx.

3+x1726.∫

(2-x)2-x21725.∫1729.∫

(1+x)1+x22

dx.

dx.

5x1728.∫dx.x+12x1727.∫dx.1001-x()1730.∫x2-5xdx.

1731.∫3xdx.

1-3xdx1733.∫.(x-1)(x+3)1734.∫2dx.

x+x-21736.∫1738.∫1740.∫

提示:x≡-1(2-5x)+2.

55提示:1≡1[(x+3)-(x-1)].4dx.x+1+x-1

1732.∫x31+x2dx.

3dx.22(x-2)(x+3)xdx.x+3x2+2

41735.∫1737.∫1739.∫

dx.2x+1x+2()()2xdx.x+2x+3()()dx22(x+a)(x+b)(a≠b).

dx(x2+a2)(x2+b2)(a

2

≠b2).

1741.∫sin2xdx.

4

1742.∫cos2xdx.

1744.∫sin3xsin5xdx.1748.∫cos3xdx.1752.∫tan3xdx.1754.∫

1743.∫sinxsin(x+α)dx.1747.∫sin3xdx.1745.∫cosxcosxdx.

231749.∫sin4xdx.

1746.∫sinæ2x-πöcosæ3x+πödx.

6øè4øè1750.∫cos4xdx.dx.22sinxcosx

1755.∫2dx.

sinxcosx3cosxdx.1757.∫sinx1751.∫cot2xdx.

提示:1≡sin2x+cos2x.

1753.∫sin23xsin32xdx.dx.3sinxcosx1758.∫dx.

cos4x

1756.∫

1759.∫dxx.

1+e1761.∫sinh2xdx.1765.∫

1760.∫

1763.∫sinhxsinh2xdx.

dx.1+e2x1762.∫cosh2xdx.

(1+e)x2

dx.22sinhxcoshx

用适当的代换求下列积分:

17.∫coshxcosh3xdx.

1766.∫x231-xdx.1768.∫

x2dx.2-x2331767.∫x3(1-5x2)dx

10

1770.∫x(2-5x)dx.

5

3

sinxcosxdx.1772.∫21+cosx

1774.∫lnxdx.

x1+lnx

1769.∫

2sin1773.∫6xdx.cosxdx.1775.

sinxdx.1771.∫cos5x∙x5dx.

1-x2

1776.∫

dx.1+ex

利用x=asint,求下列积分(参数为正):x=atant,x=asin2t等三角函数代换,

2xdx.dx1778.∫.1779.∫3x2-2(1-x2)2e+ex

arctanxdx

1777.∫∙.

1+xx∫

x

21780.∫1-x2dx.1781.∫

dx1782.∫a+xdx.

a-xdx1784.∫.(x-a)(b-x)提示:利用代换x-a=(b-a)sin2t.

1783.∫x(x

2

+a

322).

xdx.2a-x5

1785.∫(x-a)(b-x)dx.

x=acosht等双曲函数代换,利用x=asinht,求下列积分(参数为正):

2

22xdx.1786.∫a+xdx.1787.∫

a2+x2

1788.∫x-adx.

x+a17.∫

dx.提示:令x+a=(b-a)sinh2t.

(x+a)(x+b)1790.∫(x+a)(x+b)dx.用分部积分法求下列积分:1791.∫lnxdx.1793.∫ælnxö2

èxø

dx.

1795.∫xe-xdx.

1797.∫x3e-x2

dx.

1799.∫x2sin2xdx.1801.∫x3cosh3xdx.

1803.∫arcsinxdx.

1805.∫x2arccosxdx.

1807.∫ln(x+1+x2)dx.

1809.∫arctanxdx.求下列积分:1811.∫x5ex3

dx.

1813.∫x(arctanx)2dx.

1815.∫

xln(x+1+x2

)1+x2

dx.

1792.∫xnlnxdx(n≠-1).

1794.∫xln2xdx.

1796.∫x2e-2xdx.

1798.∫xcosxdx.

1800.∫xsinhxdx.

1802.∫arctanxdx.

1804.∫xarctanxdx.

1806.∫arcsinx

2xdx.1808.∫xln1∫1+-xxdx.

1810.sinxln(tanx)dx.1812.∫(arcsinx)2

dx.

1814.∫x2ln11-+xxdx.

1816.∫x2(1+x2)2dx.6

1817.∫

dx.222(a+x)1818.∫a2-x2dx.1820.∫x2a2+x2dx.1822.∫edx.

x

1819.∫x2+adx.1821.∫xsin2xdx.

1823.∫xsinxdx.

arctanxe1825.∫dx.3(1+x2)2arctanxxe1824.∫dx.322(1+x)1826.∫sin(lnx)dx.1828.∫eaxcosbxdx.1830.∫e2xsin2xdx.

1827.∫cos(lnx)dx.1829.∫eaxsinbxdx.

x

2

1831.∫(e-cosx)dx.1833.∫

ln(sinx)dx.2sinx

x

arccote1832.∫dx.ex

xxe1835.∫dx.2(x+1)1834.∫xdx.2cosx

在求下面的积分时,需要把二次三项式化成标准形式,并利用下列公式:Ⅰ.∫2dx2=1arctanx+C(a≠0).

aa+xa||

Ⅱ.∫2dx2=1ln|a+x|+C(a≠0).

a-x2a|a-x|xdx=±1lna2±x2+C.Ⅲ.∫2||2a±x2Ⅳ.∫Ⅴ.∫

dx=arcsinx+C(a>0).

aa2-x2

dx=ln|x+x2±a2|+C(a>0).||

x2±a2

xdx=±a2±x2+C(a>0).a2±x2

2

22xaa-xdx=a-x+arcsinx+C(a>0).

a222

2

2

2222|xax±adx=x±a±ln|x+x±a|+C(a>0).22|2

2

Ⅵ.∫Ⅶ.∫Ⅷ.∫

求下列积分:

7

1836.∫dx2(ab≠0).

a+bx1838.∫1840.∫

dx.3x-2x-1

21837.∫1839.∫1841.∫

dx.x-x+2

2xdx.x-2x2-1

4x+1dx.x+x+1

2xdx.x-2xcosα+1

23x1842.∫4dx.2x-x+2

1844.∫1846.∫1848.∫

dx.223sinx-8sinxcosx+5cosxdx(b≠0).2a+bxdx.x+x2

1845.∫1847.∫1849.∫

5x1843.∫6dx.3x-x-2

dx.sinx+2cosx+3dx.

21-2x-xdx.2

2x-x+2

1850.证明:若

y=ax2+bx+c(a≠0),

1851.∫

xdx.

2

5+x-xxdx.24

1-3x-2x

ìïdx=ï

íyï

ïî

|y′1ln||+ay|+C,                   a>0,|a|21arcsin-y′+C,       a<0.-ab2-4ac

1852.∫

x+1dx.

x2+x+1

1853.(a)∫1854.∫1856.∫1858.∫1860.∫

(b)∫

x3dx.42

x-2x-1dx.2

xx+x+1dx.2

(x+1)x+1

1857.∫1859.∫

1855.∫

cosxdx.

2

1+sinx+cosxx+x3dx.1+x2-x4

dx.22

xx+x-1

dx(x-1)x-x

2

.

(x+2)2dx.2

x+2x-5

1861.∫2+x-x2dx.

1863.∫x4+2x2-1xdx.

2x+1dx.1865.∫

xx4+1

1862.∫2+x+x2dx.

2

1-x+x18.∫dx.

2

x1+x-x

8

§2.有理函数的积分法

利用待定系数法,求下列积分:1866.∫

(x-22x)+(x3+5)dx.

1868.∫x10x2dx+x-2

.1870.∫x4x4+5x2+4dx.1872.∫x2

+1(x+1)2(x-1)dx.1874.∫

dx(x+1)(x+2)2(x+3)3.1876.∫x22+5x5x2+4x++4

dx.1878.∫(2dxx-4x+4)(x2-4x+5).1880.∫

dxx(1+x)(1+x+x2).1882.∫xdxx3-1

.1884.∫x4dx+1.

1886.∫6dxx+1

.

1888.∫x5-x4dx+x3-x2+x-1.

10.在什么条件下,积分

为有理函数?

利用奥斯特罗格拉茨基方法求积分:11.∫

xdx(x-1)2(x+1)3.1867.∫

(xdxx+1)(x+2)(x+3).

1869.∫x3+1x3-5x2+6x

dx.1871.∫

xdxx3-3x+2

.1873.∫çæxö2

èx2-3x+2÷ø

dx.1875.∫54dxx+x-2x3-2x2+x+1

1877.∫dx(x+1)(x2+1).1879.∫

xdx(x-1)2(x2+2x+2).1881.∫x3dx+1

.

1883.∫x4dx-1.

1885.∫x4dx+x2+1

.1887.∫

dx(1+x)(1+x2)(1+x3).18.∫x2dx.x4+3x3+92x2+3x+1∫ax2+bx+cx3(x-1)2dx

12.∫

dx(x3+1)2.

9

13.∫dx(x2+1)3.

15.∫dx(x4+1)2.

17.∫

dx(.

x4-1)3分出下列积分的代数部分:

18.∫x2+1(x4+x2+12dx.1900.∫(x54+x)5-1x+1)2dx.1901.计算积分

1902.在什么条件下,积分

为有理函数?

利用不同方法计算下列积分:

1903.∫x3(x-1)100dx.1905.∫x3x8dx+3

.1907.∫x4-3x(x8+3x4+2)dx.1909.∫8x11dxx+3x4+2.1911.∫x2n-1xn+1

dx.1913.∫

dxx(x10+2).1915.∫x1(1-+x7

x7)dx.1917.∫∫x4x2++x21+1dx.1919.x5x8-x+1

dx.1921.试导出用于计算积分

的递推公式.利用这个公式计算

14.∫x2dx(x2

+2x+2)2.16.∫x2+3x-2(x-1)(x2

+x+1)2dx.19.∫

dx(x3

+x+1)3.∫x

4dx+2x3+3x2+2x+1

.∫

αx2+2βx+γ

(ax

2

+2bx+c)2dx

1904.∫xdxx8-1

.1906.1908.∫x2∫6+xx+1dx.x4dx(x10-10)2.1910.∫x9dx(x10+2x5

+2)2.1912.∫x3n-1(x2n

+1)2dx.1914.∫

dx.x(x10

+1)21916.∫x4-1x(x4-5)(x5-5x+1)dx.1918.∫∫43x2-x21x+x++x+1dx.1920.x4x6+1+1

dx.In=∫

dx

(ax2

+bx+c)n(a≠0)10

I3=∫

dx.32

(x+x+1)2

提示:利用恒等式4a(ax2+bx+c)≡(2ax+b)+(4ac-b2).1922.利用代换t=x+a计算积分

x+bI=∫

dx(x+a)(x+b)mn

(m和n为正整数).

利用这个代换,求

1923.若Pn(x)为x的n次多项式,计算

∫(x-2)dx(x+3)23.

∫(x-a)1925.计算

Pn(x)n+1

dx.

提示:利用泰勒公式.1924.设R(x)=R*(x2),其中R*为有理函数.函数R(x)分解为有理分式时有什么特点?

dx∫1+x2n,

式中n为正整数.§3.无理函数的积分法

利用化被积函数为有理函数的方法,求下列积分:

dx1926.∫dx.1927.∫.

31+xx1+2x+x()x32+x1928.∫dx.3x+2+x

1930.∫1932.∫1929.∫x1+x

43(dx)3.

.(n为正整数).

2uæ÷.提示:令x=ç-1öè2uø

2

1-x+1dx.31+x+1x+1-x-11931.∫dx.

x+1+x-1

dx21934.∫n(x+1)(x-1)dxn+141933.∫4xdx(a>0).

x3(a-x)(x-a)(x-b)n-1pq

énnùx,(x-a)(x-b)údx,∫Rêëû

p,q,n为整数.证明:若p+q=kn,其中R为有理函数,其中k为整数,则该积分为初等函数.

dx1935.∫.

1+x+1+x1936.考虑积分

求最简单二次无理式的积分:

2x1937.∫dx.

2

1+x+x11

1938.∫

dx.2

(x+1)x+x+1

1939.∫xdx1941.∫.

2

(1+x)1-x-x

(1-x)1-x2dx2.1940.∫1942.∫

Pn(x),∫ydx=Qn-1(x)y+λ∫dxyx2+2x+2dx.x1-x+x2dx.1+x-x2

利用公式

式中y=ax2+bx+c,求下列积分:Pn(x)为n次多项式,Qn-1(x)为n-1次多项式,λ为常数,

1943.∫1947.∫x3

dx.2

1+2x-x10xdx.1944.∫1+x2

32x-6x+11x-6dx.1946.∫

x2+4x+3

1948.∫dx

x4x2-1

dx1950.∫.52

(x+1)x+2x

1945.∫x4a2-x2dx.

dx.32xx+1dx1949.∫.32(x-1)x+3x+11951.在什么条件下,积分

是代数函数?

分解有理函数

a1x2+b1x+c1ax+bx+c

2

dx

P(x)P(x)为最简分式,求积分∫dx,式中y=ax2+bx+c:Q(x)Q(x)yxdxxdx1952.∫.1953.∫.2222(x-1)1+2x-x(x-1)x-x-11954.∫1956.∫1958.∫x2+x+1dx.2(x+1)xdx.

22

(x-3x+2)x-4x+3dx.22(x+1)x-11959.∫

3x1955.∫dx.

2

(1+x)1+2x-x

dx1957.∫.22

(1+x)1-xdx(1-x)4

x2+21960.∫2dx.

x+1化二次三项式为标准形式,计算下列积分:

dx1961.∫.22(x+x+1)x+x-11+x2

.

1963.∫(x+1)dx2xdx1962.∫.22(4-2x+x)2+2x-x(x2+x+1)x+x+12.α+βt计算积分1+tdx.∫22(x-x+1)x+x+119.利用分式线性代换x=

1965.求

12

利用欧拉代换:

(x

2

+2)dx.2

2x-2x+5

(1)若a>0,ax2+bx+c=±ax+z;(2)若c>0,ax2+bx+c=xz±c;(3)a(x-x1)(x-x2)=z(x-x1),

求下列积分:

1966.∫1970.∫

dx.2

x+x+x+1

21968.∫xx-2x+2dx.é1+x(1+x)ùëû

利用不同方法计算下列积分:

dx1971.∫.22x+1-x-1dx21967.∫1969.∫dx.21+1-2x-xx-x2+3x+22x+x+3x+2

dx.

.

1972.∫1974.∫1976.∫1978.∫

1973.∫1975.∫1977.∫1979.∫xdx.32(1-x)1-x1+x+1+x+xx+1+x+x22dx.2+1-x+1+xx(x+1)2dx.

x+x+1

dx.

(x

2

-1)dx

4(x

2

+1)x+1

.

(x22+1)dx4(x-1)x+1(x+1)dx42.dx.42

xx+2x-1

xx+x+11980.证明:积分

.的求法归结为有理函数的积分法:二项微分式的积分

m

∫R(x,

ax+b,cx+ddx

)(R为有理函数)

仅在下列三种情形下可化为有理函数的积分(切比雪夫定理):

情形1,此时令x=zN,其中N为分数m和n的公分母.p为整数,

m+1为整数,情形2,此时令a+bxn=zN,其中N为分数p的分母.nm+1+p为整数.此时利用代换ax-n+b=zN,情形3,其中N为分数p的分母..n若n=1,则这些情形等价于:(1)p为整数;(2)m为整数;(3)m+p为整数.

计算下列积分:1981.∫x3+x4dx.

1982.∫x3∫x(a+bx)dx

np

(m,n和p为有理数)

(1+x)2dx.

13

1983.∫dx31+x21985.∫3dx.1+x31987.∫6dx.x1+x63.1984.∫

19.∫3x-x3dx.

1986.∫4dx.

1+x4

1988.∫5dx.

3x1+1xx5dx.1-x2

1990.在什么情形下,积分∫1+xmdx(m为有理数)为初等函数?§4.三角函数的积分法

形如

的积分可利用巧妙的变换或运用递推公式计算.求下列积分:

1991.∫cos5xdx.1993.∫cos6xdx.

∫sin

m

xcosnxdx(m及n为整数)

1992.∫sin6xdx.

1995.∫sin4xcos5xdx.

3sin1997.∫4xdx.cosx1999.∫dx.3sinx2001.∫4dx4.sinxcosxdx2003.∫.sinxcos4x1994.∫sin2xcos4xdx.1996.∫sin5xcos5xdx.

4cos1998.∫3xdx.sinx2000.∫dx.3cosx2002.∫3dx5.sinxcosx2005.∫cotxdx.62004.∫tan5xdx.2007.∫dx.35sinxcosx2009.∫dx.tanx2011.推出下列积分的递推公式:

4sin2006.∫6xdx.cosxdx2008.∫.32cosxsinx2010.∫3dx.tanx利用这些公式计算

(a)In=∫sinnxdx;(b)Kn=∫cosnxdx

6

(n>2).

2012.推出下列积分的递推公式:(a)In=∫dx,sinnx利用这些公式计算

∫sinxdx

∫cosxdx.

8

(b)Kn=∫dxcosnx

(n>2).

14

为了计算下面的积分,可以运用公式:Ⅰ.sinαsinβ=1[cos(α-β)-cos(α+β)];

2Ⅱ.cosαcosβ=1[cos(α-β)+cos(α+β)];

2Ⅲ.sinαcosβ=1[sin(α-β)+sin(α+β)].

2求积分:

2013.∫sin5xcosxdx.2015.∫sinxsinxsinxdx.232017.∫cos2axcos2bxdx.

dx∫sinx

5和

dx.∫cosx72016.∫sinxsin(x+a)sin(x+b)dx.2018.∫sin32xcos23xdx.2014.∫cosxcos2xcos3xdx.

为了计算下面的积分,可以运用恒等式:

sin(α-β)≡sin[(x+α)-(x+β)],求积分:2019.∫dx.sin(x+a)sin(x+b)dx2021.∫.cos(x+a)cos(x+b)dx2023.∫.cosx+cosacos(α-β)≡cos[(x+α)-(x+β)].

2020.∫dx.sin(x+a)cos(x+b)dx2022.∫.sinx-sina形如

2024.∫tanxtan(x+a)dx.的积分,在一般情形下可利用代换tanx=t化为有理函数的积分.

2(a)若等式

R(-sinx,cosx)≡-R(sinx,cosx)或

R(sinx,-cosx)≡-R(sinx,cosx)∫R(sinx,cosx)dx

(R为有理函数)

成立,则最好利用相应的代换cosx=t或sinx=t.

(b)若等式

R(-sinx,-cosx)≡R(sinx,cosx)成立,则最好利用代换tanx=t.

求积分:

dx2025.∫.2sinx-cosx+52sinx2027.∫dx.sinx+2cosxdx2028.∫,(a)0<ε<1;(b)ε>1.1+εcosx2sinxdx.2029.∫1+sin2x2026.∫dx.(2+cosx)sinx2030.∫15

dx.asinx+b2cos2x222cosxdx2031.∫.22222(asinx+bcosx)2033.∫2035.∫4dx4.sinx+cosx222037.∫sin4x-cos4xdx.sinx+cosx2039.∫6dx6.sinx+cosxdx.2(asinx+bcosx)2034.∫2032.∫sinxcosxdx.

sinx+cosxsinxdx.sin3x+cos3x22sinxcosxdx.2036.∫88sinx+cosxxdx.2038.∫sinxcos41+sinxdx2040.∫.222(sinx+2cosx)2041.把分母化为对数的形式,求积分

2042.证明:

.∫asinxdx+bcosxB,C为常数.式中A,提示:令a1sinx+b1cosx=A(asinx+bcosx)+B(acosx-bsinx),式中A和B为常数.

a1sinx+b1cosx∫asinx+bcosxdx=Ax+Bln|asinx+bcosx|+C,

求积分:2044.∫

2043.(a)∫sinx-cosxdx;

sinx+2cosxdx.3+5tanx(b)∫

sinxdx.sinx-3cosxasinx+b1cosx2045.∫1dx.2(asinx+bcosx)2046.证明:

式中A,B,C是某些常系数.

求积分:

2047.∫sinx+2cosx-3dx.

sinx-2cosx+32049.∫2sinx+cosxdx.

3sinx+4cosx-22050.证明:

=Ax+Bln|asinx+bcosx+c|+C∫∫

a1sinx+b1cosx+c1dx

asinx+bcosx+cdx,asinx+bcosx+c2048.∫

sinxdx.2+sinx+cosx式中A,B,C是常系数.

求积分:

22sinx-4sinxcosx+3cosxdx.2051.∫sinx+cosx22sinx-sinxcosx+2cosxdx.2052.∫sinx+2cosx2

a1sin2x+2b1sinxcosx+c1cos2xdxdx=Asinx+Bcosx+C∫,∫asinx+bcosxasinx+bcosx2053.证明:若(a-c)+b2≠0,则a1sinx+b1cosxdu1du2dx=AB∫asin2x+2bsinxcosx+ccos2x∫k1u12+λ1∫k2u22+λ2,

16

式中A,B为待定系数,λ1,λ2为方程

|b=0||a-λ||bc-λ|

的根,而

ui=(a-λi)sinx+bcosx,ki=

(λ1≠λ2)1a-λi

(i=1,2).

(sinx+cosx)dx求积分:

x-cosxdx.2054.∫2sin3sin2x+4cos2x

2056.∫sinx-2cosxdx.

1+4sinxcosx2055.∫2sinx-4sinxcosx+5cosx22.2057.证明:

dx=Asinx+Bcosx+C∫,∫(asinxdxnn-1n-2

+bcosx)(asinx+bcosx)asinx+bcosx()式中A,B,C为待定系数.

dx2058.求∫.3(sinx+2cosx)2059.若n为大于1的正整数,证明:

Asinxdxdx=+B∫+C∫,∫(a+bdxnn-1n-1n-2

cosx)(a+bcosx)(a+bcosx)(a+bcosx)求积分:

sinxdx2060.∫.

2

cosx1+sinx

2062.∫sinxdx.

2+sin2xcosn-1x+acosx+a

2dx.提示:2.20.∫令t=sinn+1x-asinx-a222065.推出积分

æsinx-aöç2÷÷dxIn=∫çç÷x+açsin÷

2øè

n

2

sin2061.∫2xdx.cosxtanx

dx0<ε<1).2063.∫2((1+εcosx)B和C.其中|a|≠|b|,并求出系数A,

(n为正整数)

的递推公式.

§5.各种超越函数的积分法

2066.证明:若P(x)为n次多项式,则

(n)′

éPxPxP()()(x)ùnaxax

∫P(x)edx=eêêa-2+⋯+(-1)an+1úú+C.

ëû

2067.证明:若P(x)为n次多项式,则

(4)éùPxP″()(x)sinaxú∙∫P(x)cosaxdx=aêêP(x)-a2+a4-⋯úëû

17

(5)éùPxP″()(x)cosaxê+2êP′(x)-+-⋯ú∙+C,24úaaaëû

(4)″

éùPxP()(x)cosaxê∙∫P(x)sinaxdx=-aêP(x)-a2+a4-⋯úúëû

(5)éùPxP″()(x)sinaxê+2êP′(x)-+-⋯ú∙+C.24úaaaëû

求积分:

2068.∫x3e3xdx.

2

2070.∫x5sin5xdx.2072.∫x7e-xdx.

2074.∫eaxcos2bxdx.2076.∫xexsinxdx.2080.∫cos2xdx.2078.∫xexsin2xdx.

2069.∫(x2-2x+2)e-xdx.2071.∫(1+x2)cosxdx.

2

2073.∫x2edx.

x

2075.∫eaxsin3bxdx.

3

2077.∫x2excosxdx.

2079.∫(x-sinx)dx.

2081.证明:若R为有理函数,数a1,a2,⋯,an为可公约的,则积分

可表示为初等函数的形式.求积分:

2082.∫dx2.

(1+ex)2084.∫

dx.x

e+e-2

2xx2∫Re,e,⋯,e

(a1xa2x

anx

)dx

2xe2083.∫dx.x1+e2085.∫2087.∫

dx2086.∫1+e2dx.

x

æ1+e4öç÷èø

1+e+e+edx.

ex-1

x2x3x6.

xe2088.∫x-1dx.20.∫e2x+4ex-1dx.e+1dx2090.∫.xx

1+e+1-e

2091.证明:若R为有理函数,其分母仅有实根,则积分

可用初等函数和超越函数

∫R(x)e

ax

dx

来表示.

eaxdx=lieax+C,式中lix=dx

()∫lnx∫xana

2092.若Pæ1ö=a0+1+⋯+n,则在什么情形下,积分a0,a1,⋯,an为常数,

xèxøx

18

为初等函数?

求积分:

2093.∫æ1-2öexdx.

xøè

2xe2095.∫2dx.x-3x+2

2

42xxedx.2097.∫2(x-2)1öedx∫Pæèxø

x

2094.∫æ1-1öe-xdx.

xøèxxedx.2096.∫2(x+1)arctanf(x),arcsinf(x),arccosf(x)等函数的积分,求含有lnf(x),其中f(x)为代数函数:

2098.∫lnnxdx(n为正整数).2100.∫ælnxödx.

èxø

3

2099.∫x3ln3xdx.

2101.∫ln(x+a)(x+b)[x+ax+b

2102.∫ln2x+1+x2dx.2104.∫

2106.∫xarctanxdx.2108.∫arcsinxdx.2110.∫arcsin2xdx.1+xlnxdx.

322(1+x).](x+adx

)(x+b)()2103.∫ln1-x+1+xdx.2105.∫xarctan(x+1)dx.2107.∫xarcsin(1-x)dx.2111.∫arccosxdx.3(1-x2)22109.∫xarccos1dx.

x()2112.∫xarccos3xdx.

(1-x2)22114.∫xln1+xdx.

1-x2113.∫xarctanxln(1+x2)dx.2115.∫

lnx+1+x2dx

()(1+x)322.

求含有双曲函数的积分:2116.∫sinh2xcosh2xdx.2118.∫sinh3xdx.2120.∫tanhxdx.2123.(a)∫

2117.∫cosh4xdx.2121.∫coth2xdx.(b)∫

2119.∫sinhxsinh2xsinh3xdx.

2122.∫tanhxdx.

2124.∫sinhaxsinbxdx.

dx;sinhx+2coshxdx(c)∫;0.1+coshxdx;

sinhx-4sinhxcoshx+9cosh2x

coshxdx(d)∫.3sinhx-4coshx22125.∫sinhaxcosbxdx.

19

求函数积分的各种例子

求积分:

2126.∫x6(dx1+x2).

2128.∫1+dxx4+x8.2130.21-xxdx.2132.∫∫x1-xxxdx.

2134.∫3dx.

x2

(1-x)2136.∫dxxx4.-2x2

-1

2138.∫

(1+x)dx

.

x+x+x

2

2140.∫(2x+3)arccos(2x-3)dx.2142.∫arcsinx∙1+x2

x22144.∫xx2+1ln1-x2x2

dx.-1dx.2146.∫

dx(2+sinx)2.2148.∫sinxdx1.

2150.∫ax2

+|cosx|x2+b-1ln||xx-+11||

dx.

2152.∫xarctan1+xx2dx.

2154.∫x3arccos1-x2dx.2156.∫xarccot2x(1+x2)dx.

2158.∫∫1-x2arcsinxdx.2160.xn

(1+lnx)dx.

x2162.∫arctan2ex

2(1+eex)dx.21.∫tanh2x+1dx.

2127.∫x2dx(.1-x2)32129.∫

dx3.∫x+x

2131.x+2x22133.∫x1-x2

dx.

52135.∫1+dxx2

.dx.x1+x3+x

6

2137.∫11-+11-x22dx.

2139.∫ln-(1x(+x+)x21+x2)dx.2141.∫xln(4+x4)dx.2143.∫xln(1)x1+ln+1x+x2

2

dx.

2145.∫

1x-xdx.

2147.1-∫x2

sin8sinx+4cosx8x

dx.

2149.ax2∫∫x2+b+1

arctanxdx.2151.xlnx(1+x2)2dx.

2153.∫arctan∫

1sin+cos2x4xdx.2155.x41+x2xdx.2157.2159.∫∫

xln(x+1+x2

)(1-x2)2dx.

x(1+x2)arccotxdx.

2161.∫arcsinex

ex

dx.2163.∫

2dx(ex+1+1)-(ex-1

+1)2.2165.∫11++sincosxxexdx.

20

§6.2166.∫|x|dx.

-|x|2168.∫(x+|x|)dx.

2

2167.∫x|x|dx.

2170.∫edx.

2172.∫φ(x)dx,其中φ(x)为数x到最近整数的距离.2173.∫[x]|sinπx|dx

2171.∫max{1,x2}dx.

2169.∫{|1+x|-|1-x|}dx.

(x≥0).

ì1-x2,         |x|≤1,2174.∫f(x)dx,其中f(x)=í

î1-|x|,        |x|>1.

1,              -∞ïî2x,          12176.求∫xf″(x)dx.

2178.设f′(x2)=1(x>0),求f(x).

x2179.(a)设f′(sin2x)=cos2x,求f(x).(b)设f′(lnx)=

2177.求∫f′(2x)dx.

{1,           0且f(0)=0,求f(x).

x,          12180.设f(x)为严格单调的连续函数f-1(x)为其反函数,证明:若

∫f(x)dx=F(x)+C,

研究例子:

(a)f(x)=xn(n>0);(c)f(x)=arcsinx;

∫f

-1

(x)dx=xf-1(x)-F(f-1(x))+C.

(b)f(x)=ex;(d)f(x)=arctanhx.

21

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- obuygou.com 版权所有 赣ICP备2024042798号-5

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务