§1.最简单的不定积分
不定积分
F(x)是它的原函数,1.不定积分的概念.若函数f(x)在区间(a,b)内有定义且连续,即当
则a (a)d ∫f(x)dx=F(x)+C, a [∫f(x)dx]=f(x)dx; (b)∫dΦ(x)=Φ(x)+C; 3.最简积分表. n+1 nxⅠ.∫xdx=+C(n≠-1). n+1Ⅲ.∫dx2=arctanx+C, -arccotx+C.1+xⅤ.∫dx=arcsinx+C, 1-x2-arccosx+C. xxaⅦ.∫adx=+C(a>0,a≠1);exdx=ex+C.∫lna(d)∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx. {{Ⅱ.∫dx=ln|x|+C(x≠0). x|| Ⅳ.∫dx2=1ln|1+x|+C. 1-x2|1-x| Ⅵ.∫dx=ln||x+x2±1||+C. x2±1Ⅸ.∫cosxdx=sinx+C. Ⅷ.∫sinxdx=-cosx+C.XIV.∫dx2=-cothx+C.sinhx4.积分的基本方法.(a)引入新变量法.若 Ⅹ.∫dx=-cotx+C.sin2xⅫ.∫sinhxdx=coshx+C.Ⅺ.∫dx=tanx+C.cos2xXIII.∫coshxdx=sinhx+CXV.∫dx2=tanhx+C.coshx则 ∫f(x)=dx+F(x)+C,∫f(u)du=F(u)+C, f(x)=f1(x)+f2(x), 式中u=φ(x)是连续可微函数. (b)分项积分法.若则 (c)代换法.若f(x)连续,令 ∫f(x)dx=∫f(x)dx+∫f(x)dx. 1 2 x=φ(t), 式中φ(t)及其导数φ′(t)皆连续,则得 1 (d)分部积分法.若u和v为x的可微函数,则 ∫f(x)dx=∫f(φ(t))φ′(t)dt. ∫udv=uv-∫vdu. 1629.∫x2(5-x)dx. 4 1628.∫(3-x2)dx. 3 利用最简积分表,求下列积分: 1630.∫(1-x)(1-2x)(1-3x)dx. 32 aaaæ÷dx.1632.∫ç+2+3öèxxxø 1631.∫æ1-xödx. èxø 2 1634.∫x-2x2+1dx.4x 31633.∫x+1dx. x3 (1-x)1635.∫3dx. xx1637.∫ 1öç1-÷xxdx.1636.∫æ x2øèx4+x-4+21638.∫dx. x32x10.∫dx2.1-x(2x-33xx)dx. 2 12.∫1+x2+1-x21-x2 4dx. 14.∫(2x+3x)dx. 3xe16.∫x+1dx.e+1 13.∫2x1639.∫dx2.1+x2x11.∫2+3dx.x-1 4x2+1-x2-1x-1x+1x-12-515.∫dx.x 10dx. 18.∫1-sin2xdx(0≤x≤π).1650.∫tan2xdx.1654.证明:若1652.∫tanh2xdx. 19.∫cot2xdx. 17.∫(1+sinx+cosx)dx.1651.∫(asinhx+bcoshx)dx. 1653.∫coth2xdx. 则 ∫f(x)dx=F(x)+C, F(ax+b)+C(a≠0).∫f(ax+b)dx=1a求下列积分:1655.∫dx. x+a1659.∫ 1657.∫31-3xdx. dx1658.∫1660.∫1656.∫(2x-3)dx. 10 51661.∫dx2. 2+3x2 (5x-2)52. 1662.∫dx2. 2-3x1-2x+x2dx. 1-xdx.2-5x1663.∫1665.∫(e2dx2 . -x-+3ex-2x)dx. 1667.∫ dxsin2æ2x+π. 1671.∫è 1669.dx4ö ø∫∫ [1sinh-cos(2xx. +1)+cosh(2x-1)]dx.1672.coshdx2x.用适当变换被积函数的方法求下列积分:21674.∫xdx. 1676.∫∫13xdx-x2 -2x2. 1678.xdx1680.∫4+x2. dx提示:dx∫(1+x)x .x =2dx. 1681.sin1x∙dxx2. 1683.∫dxxx2 . -11685.∫xdx(x 2 -1)3. 21687.∫ dx(.x1+x)16.∫xe-x2 dx. 1691.∫dxex+e -x. 1693.∫ln2x∫xdx.1695.sin5xcosxdx.1697.∫∫tansinxxdx+. 1699.3cos1700.(a)sin∫x-cosxa2sinsinx2xxcosdx. +b2x2dx;(c)∫cosxcosx 1701.∫cos2xdx; sin2dxx4cotx .3 16.1666.∫∫x3-xdx2 .-2 (sin5sin5α)dx. 1668.∫1+dxcosx.1670.∫ 1+dxsinx.1673.∫ sinhdx2.2x1675.∫x231+x3dx. 1677.∫xdx(1+x2)2. 1679.∫x3x8dx-2 .1682.∫ dx.xx2 +1 1684. ∫ dx(.x 2 +1)321686.∫x2dx()2. 8x 3 +2731688.∫ dx).x(1-x1690.∫1692.2ex+dxex.1694.∫∫1dx+e2x . dxxln.∫cot∫xlnsin(lnxx)1696.dxdxcos3x. 1698.. x (b)(d)∫∫sinxsinhcos2xdx; 1702.coshx∫2xdx. sin2dxx+2cos2x . 1703.∫dx. sinx1705.∫dx. sinhx1707.∫sinhxcoshxdx. sinh4x+cosh4x 1709.∫arctan2xdx. 1+x1711.∫lnx+1+x21+x2()dx. 1704.∫dx. cosx1706.∫dx. coshxdx1708.∫.322 coshxtanhx dx1710.∫.22(arcsinx)1-x2x1712.∫4+1dx.x+12x1713.∫4-1dx.x+1 n21ö1ö.ææç1+÷dx=dx-提示:2xøèxøè 4 xdx.1714.∫45 (x+1)1715.∫xdx. 1+xn+2 1717.∫cosxdx. 2+cos2xxx2∙31719.∫xxdx.9-4 用分项积分法计算下列积分:1721.(a)∫x2(2-3x2)dx; 2 1716.∫12ln1+xdx. 1-x1-xxcosxdx.1718.∫sin4sinx+cos4x 1720.∫ xdx1+x2+ 10 (1+x)23. 1722.∫1+xdx. 1-x3 2 (b)∫x(1-x)dx. 2x1723.∫dx.1+x1724.∫xdx. 3+x1726.∫ (2-x)2-x21725.∫1729.∫ (1+x)1+x22 dx. dx. 5x1728.∫dx.x+12x1727.∫dx.1001-x()1730.∫x2-5xdx. 1731.∫3xdx. 1-3xdx1733.∫.(x-1)(x+3)1734.∫2dx. x+x-21736.∫1738.∫1740.∫ 提示:x≡-1(2-5x)+2. 55提示:1≡1[(x+3)-(x-1)].4dx.x+1+x-1 1732.∫x31+x2dx. 3dx.22(x-2)(x+3)xdx.x+3x2+2 41735.∫1737.∫1739.∫ dx.2x+1x+2()()2xdx.x+2x+3()()dx22(x+a)(x+b)(a≠b). dx(x2+a2)(x2+b2)(a 2 ≠b2). 1741.∫sin2xdx. 4 1742.∫cos2xdx. 1744.∫sin3xsin5xdx.1748.∫cos3xdx.1752.∫tan3xdx.1754.∫ 1743.∫sinxsin(x+α)dx.1747.∫sin3xdx.1745.∫cosxcosxdx. 231749.∫sin4xdx. 1746.∫sinæ2x-πöcosæ3x+πödx. 6øè4øè1750.∫cos4xdx.dx.22sinxcosx 1755.∫2dx. sinxcosx3cosxdx.1757.∫sinx1751.∫cot2xdx. 提示:1≡sin2x+cos2x. 1753.∫sin23xsin32xdx.dx.3sinxcosx1758.∫dx. cos4x 1756.∫ 1759.∫dxx. 1+e1761.∫sinh2xdx.1765.∫ 1760.∫ 1763.∫sinhxsinh2xdx. dx.1+e2x1762.∫cosh2xdx. (1+e)x2 dx.22sinhxcoshx 用适当的代换求下列积分: 17.∫coshxcosh3xdx. 1766.∫x231-xdx.1768.∫ x2dx.2-x2331767.∫x3(1-5x2)dx 10 1770.∫x(2-5x)dx. 5 3 sinxcosxdx.1772.∫21+cosx 1774.∫lnxdx. x1+lnx 1769.∫ 2sin1773.∫6xdx.cosxdx.1775. sinxdx.1771.∫cos5x∙x5dx. 1-x2 1776.∫ dx.1+ex 利用x=asint,求下列积分(参数为正):x=atant,x=asin2t等三角函数代换, 2xdx.dx1778.∫.1779.∫3x2-2(1-x2)2e+ex arctanxdx 1777.∫∙. 1+xx∫ x 21780.∫1-x2dx.1781.∫ dx1782.∫a+xdx. a-xdx1784.∫.(x-a)(b-x)提示:利用代换x-a=(b-a)sin2t. 1783.∫x(x 2 +a 322). xdx.2a-x5 1785.∫(x-a)(b-x)dx. x=acosht等双曲函数代换,利用x=asinht,求下列积分(参数为正): 2 22xdx.1786.∫a+xdx.1787.∫ a2+x2 1788.∫x-adx. x+a17.∫ dx.提示:令x+a=(b-a)sinh2t. (x+a)(x+b)1790.∫(x+a)(x+b)dx.用分部积分法求下列积分:1791.∫lnxdx.1793.∫ælnxö2 èxø dx. 1795.∫xe-xdx. 1797.∫x3e-x2 dx. 1799.∫x2sin2xdx.1801.∫x3cosh3xdx. 1803.∫arcsinxdx. 1805.∫x2arccosxdx. 1807.∫ln(x+1+x2)dx. 1809.∫arctanxdx.求下列积分:1811.∫x5ex3 dx. 1813.∫x(arctanx)2dx. 1815.∫ xln(x+1+x2 )1+x2 dx. 1792.∫xnlnxdx(n≠-1). 1794.∫xln2xdx. 1796.∫x2e-2xdx. 1798.∫xcosxdx. 1800.∫xsinhxdx. 1802.∫arctanxdx. 1804.∫xarctanxdx. 1806.∫arcsinx 2xdx.1808.∫xln1∫1+-xxdx. 1810.sinxln(tanx)dx.1812.∫(arcsinx)2 dx. 1814.∫x2ln11-+xxdx. 1816.∫x2(1+x2)2dx.6 1817.∫ dx.222(a+x)1818.∫a2-x2dx.1820.∫x2a2+x2dx.1822.∫edx. x 1819.∫x2+adx.1821.∫xsin2xdx. 1823.∫xsinxdx. arctanxe1825.∫dx.3(1+x2)2arctanxxe1824.∫dx.322(1+x)1826.∫sin(lnx)dx.1828.∫eaxcosbxdx.1830.∫e2xsin2xdx. 1827.∫cos(lnx)dx.1829.∫eaxsinbxdx. x 2 1831.∫(e-cosx)dx.1833.∫ ln(sinx)dx.2sinx x arccote1832.∫dx.ex xxe1835.∫dx.2(x+1)1834.∫xdx.2cosx 在求下面的积分时,需要把二次三项式化成标准形式,并利用下列公式:Ⅰ.∫2dx2=1arctanx+C(a≠0). aa+xa|| Ⅱ.∫2dx2=1ln|a+x|+C(a≠0). a-x2a|a-x|xdx=±1lna2±x2+C.Ⅲ.∫2||2a±x2Ⅳ.∫Ⅴ.∫ dx=arcsinx+C(a>0). aa2-x2 dx=ln|x+x2±a2|+C(a>0).|| x2±a2 xdx=±a2±x2+C(a>0).a2±x2 2 22xaa-xdx=a-x+arcsinx+C(a>0). a222 2 2 2222|xax±adx=x±a±ln|x+x±a|+C(a>0).22|2 2 Ⅵ.∫Ⅶ.∫Ⅷ.∫ 求下列积分: 7 1836.∫dx2(ab≠0). a+bx1838.∫1840.∫ dx.3x-2x-1 21837.∫1839.∫1841.∫ dx.x-x+2 2xdx.x-2x2-1 4x+1dx.x+x+1 2xdx.x-2xcosα+1 23x1842.∫4dx.2x-x+2 1844.∫1846.∫1848.∫ dx.223sinx-8sinxcosx+5cosxdx(b≠0).2a+bxdx.x+x2 1845.∫1847.∫1849.∫ 5x1843.∫6dx.3x-x-2 dx.sinx+2cosx+3dx. 21-2x-xdx.2 2x-x+2 1850.证明:若 y=ax2+bx+c(a≠0), 则 ∫ 1851.∫ xdx. 2 5+x-xxdx.24 1-3x-2x ìïdx=ï íyï ïî |y′1ln||+ay|+C, a>0,|a|21arcsin-y′+C, a<0.-ab2-4ac 1852.∫ x+1dx. x2+x+1 1853.(a)∫1854.∫1856.∫1858.∫1860.∫ (b)∫ x3dx.42 x-2x-1dx.2 xx+x+1dx.2 (x+1)x+1 1857.∫1859.∫ 1855.∫ cosxdx. 2 1+sinx+cosxx+x3dx.1+x2-x4 dx.22 xx+x-1 dx(x-1)x-x 2 . (x+2)2dx.2 x+2x-5 1861.∫2+x-x2dx. 1863.∫x4+2x2-1xdx. 2x+1dx.1865.∫ xx4+1 1862.∫2+x+x2dx. 2 1-x+x18.∫dx. 2 x1+x-x 8 §2.有理函数的积分法 利用待定系数法,求下列积分:1866.∫ (x-22x)+(x3+5)dx. 1868.∫x10x2dx+x-2 .1870.∫x4x4+5x2+4dx.1872.∫x2 +1(x+1)2(x-1)dx.1874.∫ dx(x+1)(x+2)2(x+3)3.1876.∫x22+5x5x2+4x++4 dx.1878.∫(2dxx-4x+4)(x2-4x+5).1880.∫ dxx(1+x)(1+x+x2).1882.∫xdxx3-1 .1884.∫x4dx+1. 1886.∫6dxx+1 . 1888.∫x5-x4dx+x3-x2+x-1. 10.在什么条件下,积分 为有理函数? 利用奥斯特罗格拉茨基方法求积分:11.∫ xdx(x-1)2(x+1)3.1867.∫ (xdxx+1)(x+2)(x+3). 1869.∫x3+1x3-5x2+6x dx.1871.∫ xdxx3-3x+2 .1873.∫çæxö2 èx2-3x+2÷ø dx.1875.∫54dxx+x-2x3-2x2+x+1 1877.∫dx(x+1)(x2+1).1879.∫ xdx(x-1)2(x2+2x+2).1881.∫x3dx+1 . 1883.∫x4dx-1. 1885.∫x4dx+x2+1 .1887.∫ dx(1+x)(1+x2)(1+x3).18.∫x2dx.x4+3x3+92x2+3x+1∫ax2+bx+cx3(x-1)2dx 12.∫ dx(x3+1)2. 9 13.∫dx(x2+1)3. 15.∫dx(x4+1)2. 17.∫ dx(. x4-1)3分出下列积分的代数部分: 18.∫x2+1(x4+x2+12dx.1900.∫(x54+x)5-1x+1)2dx.1901.计算积分 1902.在什么条件下,积分 为有理函数? 利用不同方法计算下列积分: 1903.∫x3(x-1)100dx.1905.∫x3x8dx+3 .1907.∫x4-3x(x8+3x4+2)dx.1909.∫8x11dxx+3x4+2.1911.∫x2n-1xn+1 dx.1913.∫ dxx(x10+2).1915.∫x1(1-+x7 x7)dx.1917.∫∫x4x2++x21+1dx.1919.x5x8-x+1 dx.1921.试导出用于计算积分 的递推公式.利用这个公式计算 14.∫x2dx(x2 +2x+2)2.16.∫x2+3x-2(x-1)(x2 +x+1)2dx.19.∫ dx(x3 +x+1)3.∫x 4dx+2x3+3x2+2x+1 .∫ αx2+2βx+γ (ax 2 +2bx+c)2dx 1904.∫xdxx8-1 .1906.1908.∫x2∫6+xx+1dx.x4dx(x10-10)2.1910.∫x9dx(x10+2x5 +2)2.1912.∫x3n-1(x2n +1)2dx.1914.∫ dx.x(x10 +1)21916.∫x4-1x(x4-5)(x5-5x+1)dx.1918.∫∫43x2-x21x+x++x+1dx.1920.x4x6+1+1 dx.In=∫ dx (ax2 +bx+c)n(a≠0)10 I3=∫ dx.32 (x+x+1)2 提示:利用恒等式4a(ax2+bx+c)≡(2ax+b)+(4ac-b2).1922.利用代换t=x+a计算积分 x+bI=∫ dx(x+a)(x+b)mn (m和n为正整数). 利用这个代换,求 1923.若Pn(x)为x的n次多项式,计算 ∫(x-2)dx(x+3)23. ∫(x-a)1925.计算 Pn(x)n+1 dx. 提示:利用泰勒公式.1924.设R(x)=R*(x2),其中R*为有理函数.函数R(x)分解为有理分式时有什么特点? dx∫1+x2n, 式中n为正整数.§3.无理函数的积分法 利用化被积函数为有理函数的方法,求下列积分: dx1926.∫dx.1927.∫. 31+xx1+2x+x()x32+x1928.∫dx.3x+2+x 1930.∫1932.∫1929.∫x1+x 43(dx)3. .(n为正整数). 2uæ÷.提示:令x=ç-1öè2uø 2 1-x+1dx.31+x+1x+1-x-11931.∫dx. x+1+x-1 dx21934.∫n(x+1)(x-1)dxn+141933.∫4xdx(a>0). x3(a-x)(x-a)(x-b)n-1pq énnùx,(x-a)(x-b)údx,∫Rêëû p,q,n为整数.证明:若p+q=kn,其中R为有理函数,其中k为整数,则该积分为初等函数. dx1935.∫. 1+x+1+x1936.考虑积分 求最简单二次无理式的积分: 2x1937.∫dx. 2 1+x+x11 1938.∫ dx.2 (x+1)x+x+1 1939.∫xdx1941.∫. 2 (1+x)1-x-x (1-x)1-x2dx2.1940.∫1942.∫ Pn(x),∫ydx=Qn-1(x)y+λ∫dxyx2+2x+2dx.x1-x+x2dx.1+x-x2 利用公式 式中y=ax2+bx+c,求下列积分:Pn(x)为n次多项式,Qn-1(x)为n-1次多项式,λ为常数, 1943.∫1947.∫x3 dx.2 1+2x-x10xdx.1944.∫1+x2 32x-6x+11x-6dx.1946.∫ x2+4x+3 1948.∫dx x4x2-1 dx1950.∫.52 (x+1)x+2x 1945.∫x4a2-x2dx. dx.32xx+1dx1949.∫.32(x-1)x+3x+11951.在什么条件下,积分 是代数函数? 分解有理函数 ∫ a1x2+b1x+c1ax+bx+c 2 dx P(x)P(x)为最简分式,求积分∫dx,式中y=ax2+bx+c:Q(x)Q(x)yxdxxdx1952.∫.1953.∫.2222(x-1)1+2x-x(x-1)x-x-11954.∫1956.∫1958.∫x2+x+1dx.2(x+1)xdx. 22 (x-3x+2)x-4x+3dx.22(x+1)x-11959.∫ 3x1955.∫dx. 2 (1+x)1+2x-x dx1957.∫.22 (1+x)1-xdx(1-x)4 x2+21960.∫2dx. x+1化二次三项式为标准形式,计算下列积分: dx1961.∫.22(x+x+1)x+x-11+x2 . 1963.∫(x+1)dx2xdx1962.∫.22(4-2x+x)2+2x-x(x2+x+1)x+x+12.α+βt计算积分1+tdx.∫22(x-x+1)x+x+119.利用分式线性代换x= 1965.求 12 ∫ 利用欧拉代换: (x 2 +2)dx.2 2x-2x+5 (1)若a>0,ax2+bx+c=±ax+z;(2)若c>0,ax2+bx+c=xz±c;(3)a(x-x1)(x-x2)=z(x-x1), 求下列积分: 1966.∫1970.∫ dx.2 x+x+x+1 21968.∫xx-2x+2dx.é1+x(1+x)ùëû 利用不同方法计算下列积分: dx1971.∫.22x+1-x-1dx21967.∫1969.∫dx.21+1-2x-xx-x2+3x+22x+x+3x+2 dx. . 1972.∫1974.∫1976.∫1978.∫ 1973.∫1975.∫1977.∫1979.∫xdx.32(1-x)1-x1+x+1+x+xx+1+x+x22dx.2+1-x+1+xx(x+1)2dx. x+x+1 dx. (x 2 -1)dx 4(x 2 +1)x+1 . (x22+1)dx4(x-1)x+1(x+1)dx42.dx.42 xx+2x-1 xx+x+11980.证明:积分 .的求法归结为有理函数的积分法:二项微分式的积分 m ∫R(x, ax+b,cx+ddx )(R为有理函数) 仅在下列三种情形下可化为有理函数的积分(切比雪夫定理): 情形1,此时令x=zN,其中N为分数m和n的公分母.p为整数, m+1为整数,情形2,此时令a+bxn=zN,其中N为分数p的分母.nm+1+p为整数.此时利用代换ax-n+b=zN,情形3,其中N为分数p的分母..n若n=1,则这些情形等价于:(1)p为整数;(2)m为整数;(3)m+p为整数. 计算下列积分:1981.∫x3+x4dx. 1982.∫x3∫x(a+bx)dx np (m,n和p为有理数) (1+x)2dx. 13 1983.∫dx31+x21985.∫3dx.1+x31987.∫6dx.x1+x63.1984.∫ 19.∫3x-x3dx. 1986.∫4dx. 1+x4 1988.∫5dx. 3x1+1xx5dx.1-x2 1990.在什么情形下,积分∫1+xmdx(m为有理数)为初等函数?§4.三角函数的积分法 形如 的积分可利用巧妙的变换或运用递推公式计算.求下列积分: 1991.∫cos5xdx.1993.∫cos6xdx. ∫sin m xcosnxdx(m及n为整数) 1992.∫sin6xdx. 1995.∫sin4xcos5xdx. 3sin1997.∫4xdx.cosx1999.∫dx.3sinx2001.∫4dx4.sinxcosxdx2003.∫.sinxcos4x1994.∫sin2xcos4xdx.1996.∫sin5xcos5xdx. 4cos1998.∫3xdx.sinx2000.∫dx.3cosx2002.∫3dx5.sinxcosx2005.∫cotxdx.62004.∫tan5xdx.2007.∫dx.35sinxcosx2009.∫dx.tanx2011.推出下列积分的递推公式: 4sin2006.∫6xdx.cosxdx2008.∫.32cosxsinx2010.∫3dx.tanx利用这些公式计算 (a)In=∫sinnxdx;(b)Kn=∫cosnxdx 6 (n>2). 2012.推出下列积分的递推公式:(a)In=∫dx,sinnx利用这些公式计算 ∫sinxdx 和 ∫cosxdx. 8 (b)Kn=∫dxcosnx (n>2). 14 为了计算下面的积分,可以运用公式:Ⅰ.sinαsinβ=1[cos(α-β)-cos(α+β)]; 2Ⅱ.cosαcosβ=1[cos(α-β)+cos(α+β)]; 2Ⅲ.sinαcosβ=1[sin(α-β)+sin(α+β)]. 2求积分: 2013.∫sin5xcosxdx.2015.∫sinxsinxsinxdx.232017.∫cos2axcos2bxdx. dx∫sinx 5和 dx.∫cosx72016.∫sinxsin(x+a)sin(x+b)dx.2018.∫sin32xcos23xdx.2014.∫cosxcos2xcos3xdx. 为了计算下面的积分,可以运用恒等式: sin(α-β)≡sin[(x+α)-(x+β)],求积分:2019.∫dx.sin(x+a)sin(x+b)dx2021.∫.cos(x+a)cos(x+b)dx2023.∫.cosx+cosacos(α-β)≡cos[(x+α)-(x+β)]. 2020.∫dx.sin(x+a)cos(x+b)dx2022.∫.sinx-sina形如 2024.∫tanxtan(x+a)dx.的积分,在一般情形下可利用代换tanx=t化为有理函数的积分. 2(a)若等式 R(-sinx,cosx)≡-R(sinx,cosx)或 R(sinx,-cosx)≡-R(sinx,cosx)∫R(sinx,cosx)dx (R为有理函数) 成立,则最好利用相应的代换cosx=t或sinx=t. (b)若等式 R(-sinx,-cosx)≡R(sinx,cosx)成立,则最好利用代换tanx=t. 求积分: dx2025.∫.2sinx-cosx+52sinx2027.∫dx.sinx+2cosxdx2028.∫,(a)0<ε<1;(b)ε>1.1+εcosx2sinxdx.2029.∫1+sin2x2026.∫dx.(2+cosx)sinx2030.∫15 dx.asinx+b2cos2x222cosxdx2031.∫.22222(asinx+bcosx)2033.∫2035.∫4dx4.sinx+cosx222037.∫sin4x-cos4xdx.sinx+cosx2039.∫6dx6.sinx+cosxdx.2(asinx+bcosx)2034.∫2032.∫sinxcosxdx. sinx+cosxsinxdx.sin3x+cos3x22sinxcosxdx.2036.∫88sinx+cosxxdx.2038.∫sinxcos41+sinxdx2040.∫.222(sinx+2cosx)2041.把分母化为对数的形式,求积分 2042.证明: .∫asinxdx+bcosxB,C为常数.式中A,提示:令a1sinx+b1cosx=A(asinx+bcosx)+B(acosx-bsinx),式中A和B为常数. a1sinx+b1cosx∫asinx+bcosxdx=Ax+Bln|asinx+bcosx|+C, 求积分:2044.∫ 2043.(a)∫sinx-cosxdx; sinx+2cosxdx.3+5tanx(b)∫ sinxdx.sinx-3cosxasinx+b1cosx2045.∫1dx.2(asinx+bcosx)2046.证明: 式中A,B,C是某些常系数. 求积分: 2047.∫sinx+2cosx-3dx. sinx-2cosx+32049.∫2sinx+cosxdx. 3sinx+4cosx-22050.证明: =Ax+Bln|asinx+bcosx+c|+C∫∫ a1sinx+b1cosx+c1dx asinx+bcosx+cdx,asinx+bcosx+c2048.∫ sinxdx.2+sinx+cosx式中A,B,C是常系数. 求积分: 22sinx-4sinxcosx+3cosxdx.2051.∫sinx+cosx22sinx-sinxcosx+2cosxdx.2052.∫sinx+2cosx2 a1sin2x+2b1sinxcosx+c1cos2xdxdx=Asinx+Bcosx+C∫,∫asinx+bcosxasinx+bcosx2053.证明:若(a-c)+b2≠0,则a1sinx+b1cosxdu1du2dx=AB∫asin2x+2bsinxcosx+ccos2x∫k1u12+λ1∫k2u22+λ2, 16 式中A,B为待定系数,λ1,λ2为方程 |b=0||a-λ||bc-λ| 的根,而 ui=(a-λi)sinx+bcosx,ki= (λ1≠λ2)1a-λi (i=1,2). (sinx+cosx)dx求积分: x-cosxdx.2054.∫2sin3sin2x+4cos2x 2056.∫sinx-2cosxdx. 1+4sinxcosx2055.∫2sinx-4sinxcosx+5cosx22.2057.证明: dx=Asinx+Bcosx+C∫,∫(asinxdxnn-1n-2 +bcosx)(asinx+bcosx)asinx+bcosx()式中A,B,C为待定系数. dx2058.求∫.3(sinx+2cosx)2059.若n为大于1的正整数,证明: Asinxdxdx=+B∫+C∫,∫(a+bdxnn-1n-1n-2 cosx)(a+bcosx)(a+bcosx)(a+bcosx)求积分: sinxdx2060.∫. 2 cosx1+sinx 2062.∫sinxdx. 2+sin2xcosn-1x+acosx+a 2dx.提示:2.20.∫令t=sinn+1x-asinx-a222065.推出积分 æsinx-aöç2÷÷dxIn=∫çç÷x+açsin÷ 2øè n 2 sin2061.∫2xdx.cosxtanx dx0<ε<1).2063.∫2((1+εcosx)B和C.其中|a|≠|b|,并求出系数A, (n为正整数) 的递推公式. §5.各种超越函数的积分法 2066.证明:若P(x)为n次多项式,则 (n)′ éPxPxP()()(x)ùnaxax ∫P(x)edx=eêêa-2+⋯+(-1)an+1úú+C. ëû 2067.证明:若P(x)为n次多项式,则 (4)éùPxP″()(x)sinaxú∙∫P(x)cosaxdx=aêêP(x)-a2+a4-⋯úëû 17 (5)éùPxP″()(x)cosaxê+2êP′(x)-+-⋯ú∙+C,24úaaaëû (4)″ éùPxP()(x)cosaxê∙∫P(x)sinaxdx=-aêP(x)-a2+a4-⋯úúëû (5)éùPxP″()(x)sinaxê+2êP′(x)-+-⋯ú∙+C.24úaaaëû 求积分: 2068.∫x3e3xdx. 2 2070.∫x5sin5xdx.2072.∫x7e-xdx. 2074.∫eaxcos2bxdx.2076.∫xexsinxdx.2080.∫cos2xdx.2078.∫xexsin2xdx. 2069.∫(x2-2x+2)e-xdx.2071.∫(1+x2)cosxdx. 2 2073.∫x2edx. x 2075.∫eaxsin3bxdx. 3 2077.∫x2excosxdx. 2079.∫(x-sinx)dx. 2081.证明:若R为有理函数,数a1,a2,⋯,an为可公约的,则积分 可表示为初等函数的形式.求积分: 2082.∫dx2. (1+ex)2084.∫ dx.x e+e-2 2xx2∫Re,e,⋯,e (a1xa2x anx )dx 2xe2083.∫dx.x1+e2085.∫2087.∫ dx2086.∫1+e2dx. x æ1+e4öç÷èø 1+e+e+edx. ex-1 x2x3x6. xe2088.∫x-1dx.20.∫e2x+4ex-1dx.e+1dx2090.∫.xx 1+e+1-e 2091.证明:若R为有理函数,其分母仅有实根,则积分 可用初等函数和超越函数 ∫R(x)e ax dx 来表示. eaxdx=lieax+C,式中lix=dx ()∫lnx∫xana 2092.若Pæ1ö=a0+1+⋯+n,则在什么情形下,积分a0,a1,⋯,an为常数, xèxøx 18 为初等函数? 求积分: 2093.∫æ1-2öexdx. xøè 2xe2095.∫2dx.x-3x+2 2 42xxedx.2097.∫2(x-2)1öedx∫Pæèxø x 2094.∫æ1-1öe-xdx. xøèxxedx.2096.∫2(x+1)arctanf(x),arcsinf(x),arccosf(x)等函数的积分,求含有lnf(x),其中f(x)为代数函数: 2098.∫lnnxdx(n为正整数).2100.∫ælnxödx. èxø 3 2099.∫x3ln3xdx. 2101.∫ln(x+a)(x+b)[x+ax+b 2102.∫ln2x+1+x2dx.2104.∫ 2106.∫xarctanxdx.2108.∫arcsinxdx.2110.∫arcsin2xdx.1+xlnxdx. 322(1+x).](x+adx )(x+b)()2103.∫ln1-x+1+xdx.2105.∫xarctan(x+1)dx.2107.∫xarcsin(1-x)dx.2111.∫arccosxdx.3(1-x2)22109.∫xarccos1dx. x()2112.∫xarccos3xdx. (1-x2)22114.∫xln1+xdx. 1-x2113.∫xarctanxln(1+x2)dx.2115.∫ lnx+1+x2dx ()(1+x)322. 求含有双曲函数的积分:2116.∫sinh2xcosh2xdx.2118.∫sinh3xdx.2120.∫tanhxdx.2123.(a)∫ 2117.∫cosh4xdx.2121.∫coth2xdx.(b)∫ 2119.∫sinhxsinh2xsinh3xdx. 2122.∫tanhxdx. 2124.∫sinhaxsinbxdx. dx;sinhx+2coshxdx(c)∫;0.1+coshxdx; sinhx-4sinhxcoshx+9cosh2x coshxdx(d)∫.3sinhx-4coshx22125.∫sinhaxcosbxdx. 19 求函数积分的各种例子 求积分: 2126.∫x6(dx1+x2). 2128.∫1+dxx4+x8.2130.21-xxdx.2132.∫∫x1-xxxdx. 2134.∫3dx. x2 (1-x)2136.∫dxxx4.-2x2 -1 2138.∫ (1+x)dx . x+x+x 2 2140.∫(2x+3)arccos(2x-3)dx.2142.∫arcsinx∙1+x2 x22144.∫xx2+1ln1-x2x2 dx.-1dx.2146.∫ dx(2+sinx)2.2148.∫sinxdx1. 2150.∫ax2 +|cosx|x2+b-1ln||xx-+11|| dx. 2152.∫xarctan1+xx2dx. 2154.∫x3arccos1-x2dx.2156.∫xarccot2x(1+x2)dx. 2158.∫∫1-x2arcsinxdx.2160.xn (1+lnx)dx. x2162.∫arctan2ex 2(1+eex)dx.21.∫tanh2x+1dx. 2127.∫x2dx(.1-x2)32129.∫ dx3.∫x+x 2131.x+2x22133.∫x1-x2 dx. 52135.∫1+dxx2 .dx.x1+x3+x 6 2137.∫11-+11-x22dx. 2139.∫ln-(1x(+x+)x21+x2)dx.2141.∫xln(4+x4)dx.2143.∫xln(1)x1+ln+1x+x2 2 dx. 2145.∫ 1x-xdx. 2147.1-∫x2 sin8sinx+4cosx8x dx. 2149.ax2∫∫x2+b+1 arctanxdx.2151.xlnx(1+x2)2dx. 2153.∫arctan∫ 1sin+cos2x4xdx.2155.x41+x2xdx.2157.2159.∫∫ xln(x+1+x2 )(1-x2)2dx. x(1+x2)arccotxdx. 2161.∫arcsinex ex dx.2163.∫ 2dx(ex+1+1)-(ex-1 +1)2.2165.∫11++sincosxxexdx. 20 §6.2166.∫|x|dx. -|x|2168.∫(x+|x|)dx. 2 2167.∫x|x|dx. 2170.∫edx. 2172.∫φ(x)dx,其中φ(x)为数x到最近整数的距离.2173.∫[x]|sinπx|dx 2171.∫max{1,x2}dx. 2169.∫{|1+x|-|1-x|}dx. (x≥0). ì1-x2, |x|≤1,2174.∫f(x)dx,其中f(x)=í î1-|x|, |x|>1. 1, -∞ 2178.设f′(x2)=1(x>0),求f(x). x2179.(a)设f′(sin2x)=cos2x,求f(x).(b)设f′(lnx)= 2177.求∫f′(2x)dx. {1, 0 x, 1 则 ∫f(x)dx=F(x)+C, 研究例子: (a)f(x)=xn(n>0);(c)f(x)=arcsinx; ∫f -1 (x)dx=xf-1(x)-F(f-1(x))+C. (b)f(x)=ex;(d)f(x)=arctanhx. 21
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- obuygou.com 版权所有 赣ICP备2024042798号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务