绝密★启用前
2019年普通高等学校招生全国统一考试文科III卷
数学 试题卷
本试卷共5页,23题(含选考题)。全卷满分150分。 考试用时120 分钟。
★祝考试顺利★注意事项:
1.答题前, 先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在 答题卡上的指定位置。
2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写 在试卷、草稿纸和答题卡上的非答题区域均无效。
3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。写在试卷、草稿纸 和答题卡,上的非答题区域均无效。
4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答 题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。. 5.考试结束后, 请将本试卷和答题卡-并上交。
一、选择题:本题共12小题,每小题5分,共60分。(共12题;共60分) 1.(2019·全国Ⅲ卷理)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( ) A. {-1,0,1} B. {0,1} C. {-1,1} D. {0,1,2} 2.(2019·全国Ⅲ卷理)若z(1+i)=2i,则z=( )
A. -1-i B. -1+i C. 1-i D. 1+i 3.(2019·全国Ⅲ卷文)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A. 6 B. 4 C. 3 D. 2
1
1
1
1
1
4.(2019·全国Ⅲ卷理)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A. 0.5 B. 0.6 C. 0.7 D. 0.8
5.(2019·全国Ⅲ卷文)函数 𝑓(𝑥)=2sin𝑥−sin2𝑥 在[0,2π]的零点个数为( ) A. 2 B. 3 C. 4 D. 5 6.(2019·全国Ⅲ卷理)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1 , 则a3=( )
A. 16 B. 8 C. 4 D. 2
7.(2019·全国Ⅲ卷理)已知曲线y=aex+xlnx在点(1,ae)处的切线方程为y=2x+b,则( )
A. a=e,b=-1 B. a=e,b=1 C. a=e-1 , b=1 D. a=e-1 , b=-1
8.(2019·全国Ⅲ卷理)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD , M是线段ED的中点,则( )
A. BM=EN , 且直线BM、EN 是相交直线
2
B、 BM≠EN , 且直线BM , EN 是相交直线 C. BM=EN , 且直线BM、EN 是异面直线 D. BM≠EN , 且直线BM , EN 是异面直线
9.(2019·全国Ⅲ卷理)执行下边的程序框图,如果输入的 𝜀 为0.01,则输出 𝑠 的值等于( )
A. 2−24 B. 2−25 C. 2−26 D. 2−27 10.(2019·全国Ⅲ卷文)已知F是双曲线C:
𝑥24
1111
−
𝑦25
=1 的一个焦点,点P在C
上,O为坐标原点,若 |𝑂𝑃|=|𝑂𝐹| ,则 △𝑂𝑃𝐹 的面积为( ) A. 2 B. C. 2 D. 2 2
3
5
7
9
3
𝑥+𝑦⩾6,
11.(2019· 表示的平面区域为D.命题 全国Ⅲ卷文)记不等式组 {
2𝑥−𝑦≥0𝑝:∃(𝑥,𝑦)∈𝐷,2𝑥+𝑦⩾9 ;命题 𝑞:∀(𝑥,𝑦)∈𝐷,2𝑥+𝑦⩽12 .下面给出了四个命题( )
① 𝑝∨𝑞 ② ¬𝑝∨𝑞 ③ 𝑝∧¬𝑞 ④ ¬𝑝∧¬𝑞 这四个命题中,所有真命题的编号是( )
A. ①③ B. ①② C. ②③ D. ③④ 12.(2019·全国Ⅲ卷理)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则( )
A. 𝑓 (log3 4 )> 𝑓 ( 2 )> 𝑓 ( 2 ) B. 𝑓 (log3 4 )> 𝑓 ( 2 )> 𝑓 ( 2 )
C. 𝑓 ( 2−2 )> 𝑓 ( 2−3 )> 𝑓 (log3 4 ) D. 𝑓 ( 2 )> 𝑓 ( 2 )> 𝑓 (log3 4 )
二、填空题:本题共4小题,每小题5分,共20分。(共4题;共20分) 13.(2019·全国Ⅲ卷文)已知向量 𝑎=(2,2),𝑏=(−8,6) ,则 cos<𝑎,𝑏>= ________.
14.(2019·全国Ⅲ卷文)记Sn为等差数列{an}的前n项和,若 𝑎3=5,𝑎7=13 ,则 𝑆10= ________.
15.(2019·全国Ⅲ卷理)设F1 , F2为椭圆C:
𝑥236
→
→
→→
−
2
33
2
1
−
32−
231
−
23
−
321
−
321
+
𝑦220
=1 的两个焦点,M为
C上一点且在第一象限,若△MF1F2为等腰三角形,则M的坐标为________。 16.(2019·全国Ⅲ卷理)学生到工厂劳动实践,利用3D打印技术制作模型,如图,该模型为长方体ABCD-A1B1C1D1 , 挖去四棱推O一EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,
4
AA1=4cm,3D打印所用原料密度为0.9g/cm2 , 不考虑打印损耗,制作该模型所需原料的质量为________g.
三、解答题(共7题;共70分)
17.(2019·全国Ⅲ卷理)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同。经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中a,b的值;
(2)分别估计甲,乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表)
5
18.(2019·全国Ⅲ卷理)△ABC的内角A、B、C的对边分别为a,b,c,已知 𝑎sin
𝐴+𝐶2
=𝑏sin𝐴
(1)求B;
(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围. 19.(2019·全国Ⅲ卷文)图1是由矩形ADEB、 Rt△ ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB , BC折起使得BE与BF重合,连结DG , 如图2.
(1)证明图2中的A , C , G , D四点共面,且平面ABC⊥平面BCGE; (2)求图2中的四边形ACGD的面积.
20.(2019·全国Ⅲ卷文)已知函数 𝑓(𝑥)=2𝑥3−𝑎𝑥2+2 . (1)讨论 𝑓(𝑥) 的单调性;
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- obuygou.com 版权所有 赣ICP备2024042798号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务