您好,欢迎来到步遥情感网。
搜索
您的当前位置:首页HITEMP2010简介

HITEMP2010简介

来源:步遥情感网
Readme for CDSD-HITEMP

CDSD-HITEMP is a version of the Carbon Dioxide Spectroscopic Databank (CDSD) and is a part of new version of the HITEMP database [1].

CDSD-HITEMP was developed in V.E. Zuev Institute of Atmospheric Optics Siberian Branch, Russian Academy of Sciences. All queries and comments about the CDSD-HITEMP databank should be addressed to:

S.A. Tashkun (tashkun@rambler.ru), V.I. Perevalov (vip@lts.iao.ru),

Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, 1, Zuev Square, 634021, Tomsk Russia

CDSD-HITEMP contains calculated parameters of spectral lines of 7 most abundant in the Earth's atmosphere isotopologues of the carbon dioxide molecule: 12C16O2, 13C16O2, 16O12C18O, 161217

OCO, 16O13C18O, 16O13C17O, and 12C18O2. The databank covers the 6 - 12784 cm-1 spectral range and contains more than 11 million entries.

Reference temperature of the databank is Tref = 296 K.

CDSD-HITEMP is the result of merging 3 previous versions of CDSD, namely

1. enlarged version of CDSD-1000 [2] which has reference temperature Tref = 1000 K and intensity cutoff Icut = 10-27 cm-1/(molecule cm-2)

2. version of CDSD called CDSD-Venus adapted for Venus conditions with Tref = 750 K and Icut = 10-30 cm-1/(molecule cm-2)

3. atmospheric version of CDSD which is partly included into present version of the HITRAN database [3] with Tref = 296 K and Icut = 10-30 cm-1/(molecule cm-2).

Format of the databank is compatible with HITRAN-2008 [3].

Structure of CDSD-HITEMP

Line positions All line positions are calculated values based on global fits of measured positions using the effective Hamiltonian approach [4,5]. Measured positions in MHz were converted to cm-1 using the factor 1./29979.2458.

Line intensities All line intensities are calculated values based on global fits of measured positions using the effective operator approach [4,6]. Measured at temperature T intensities in cm-2/atm were

converted to cm-1/(molecule cm-2) using factor T/(2.679e19*273.15). Isotopic abundances are the same as in the HITRAN database.

Pressure broadening parameters Air-broadened halfwidths gair, self-broadened halfwidths gself, coefficients of temperature

dependence of air-broadened halfwidths nair and coefficients of temperature dependence of self-broadened halfwidths nself are calculated values based on a semi-empirical approach [2,7].

Air-broadened pressure shifts Air-broadened pressure shifts dair were calculated using a FORTRAN function Shift_CO2_air [8].

Format of the databank The CDSD databank format is conformed with the current HITRAN format [3]. Each databank entry has the following fields field number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 parameter M I v s A gair gself E\" nair dair nself v1' v2' l2' v3' r' v1\" v2\" l2\" v3\" r\" p' c' n' p\" c\" n\" branch j\" w\" t_CDSD field length 2 1 12 10 10 5 5 10 4 8 4 3 2 2 2 1 8 2 2 2 1 3 2 4 3 2 4 3 3 1 5 Fortran descriptor I2 I1 F12.6 E10.3 E10.3 F5.4 F5.4 F10.4 F4.2 F8.6 F4.2 I3 I2 I2 I2 I1 5x,I3 I2 I2 I2 I1 I3 I2 I4 I3 I2 I4 2x,a1 I3 a1 I5 meaning HITRAN molecule HITRAN isotopologue vacuum wavenumber intensity Einstein A-coefficient air-broadened half-width self-broadened half-width lower-state energy temperature-dependence exponent for gair air pressure-induced line shift temperature-dependence exponent for gself upper state vibrational numbers v1v2l2v3r type integer integer real real real real real real real real real integer integer integer integer integer integer integer integer integer integer integer integer integer integer integer integer char integer char units and comments cm-1 cm-1/(molecule cm-2) at 296 K s-1 cm-1atm-1 at 296 K cm-1atm-1 at 296 K cm-1 cm-1atm-1 at 296 K Spectroscopic assignment adopted for HITRAN lower state vibrational numbers v1v2l2v3r upper state polyad, Wang symmetry and ranking number lower state polyad, Wang symmetry and ranking number P, Q, R lower state j lower state Wang symmetry Generalized assignment discussed in detail in [2]. p=2v1+v2+3v3 c= 1 or 2 n=1,2,… ‘e’ or ‘f’ Origin of a line: 296 – CDSD-296 750 – CDSD-Venus 1000 – CDSD-1000 Isotopic composition of CDSD-HITEMP isotopologue 1216CO2 1316CO2 161218OCO 161217OCO 161318OCO 161317OCO 1218CO2 entries 5881459 1732514 2283608 6048 522204 36179 132746 vmin 145.8 260.7 5.9 10.6 354.3 546.6 392.6 vmax 12784.1 12462.0 11422.6 8270.1 6744.2 6768.6 8162.9 smin 3.47E-51 9.28E-48 1.55E-46 2.65E-45 2.04E-43 1.29E-41 3.27E-42 smax 3.52E-18 3.74E-20 6.87E-21 1.26E-21 7.81E-23 1.40E-23 1.33E-23

Distribution of CDSD-HITEMP

CDSD-HITEMP is distributed as a set of 20 zipped ascii files sorted by vacuum wavenumber v

file cdsd_01 cdsd_02 cdsd_03 cdsd_04 cdsd_05 cdsd_06 cdsd_07 cdsd_08 cdsd_09 cdsd_10 cdsd_11 cdsd_12 cdsd_13 cdsd_14 cdsd_15 cdsd_16 cdsd_17 cdsd_18 cdsd_19 cdsd_20

vmin (cm-1) 0 500 625 750 1000 1500 2000 2125 2250 2500 3000 3250 3500 3750 4000 4500 5000 5500 6000 6500 vmax (cm-1) 500 625 750 1000 1500 2000 2125 2250 2500 3000 3250 3500 3750 4000 4500 5000 5500 6000 6500 13000

Graphical presentation of CDSD-HITEMP for 3 different temperatures

In order to compare CDSD-HITEMP with other databanks we simulated medium resolution absorption spectra of pure CO2 with different temperatures and intensity cutoffs under the following conditions:

Frequency range (cm-1) 500 - 13000 Pressure (atm) 1 Pathlength (cm) 1 Type of apparatus function rectangle

-1

Width of apparatus function (cm) 1 Contour type Lorentz

-1

Wing length (cm) 2 Number of frequency steps 3000

CDSD-HITEMP versus HITRAN-2008 [3]

CDSD-HITEMP versus HITRAN-2008, HOT-CO2 and HITEMP databanks

CDSD-HITEMP versus HOT-CO2

HOT-CO2 is a calculated database created by Wattson to study Venus’ atmosphere. Reference temperature of the database is 750 K and intensity cutoff is 10-30 cm-1/(cm-2 molecule)) at 750 K [9]. The database covers the 500 – 12500 cm-1 spectral range and includes data for 12C16O2, 1316

CO2, 16O12C18O, and 16O13C18O isotopologues.

CDSD-HITEMP versus HITEMP-1995

HITEMP-1995 is a previous version of the HITEMP database [10]. Reference temperature of the database is 296 K and intensity cutoff is ~10-27 cm-1/(cm-2 molecule)) at T = 1000 K. The

database consists of 1032269 entries of 8 isotopologues and covers the 500 – 98 cm-1 spectral range.

Validation of CDSD-HITEMP using medium and low resolution high-temperature spectra

i)

15 μm region

Medium resolution CO2 high-temperature spectra for T = 1000 and 1550 K [11]. For each region we give a plot of digitized observed transmittance taken from [11] and simulated transmittances using CDSD-HITEMP and HITEMP [10] data. Transmittances were calculated by a line-by-line code. Temperature 1000 K Temperature 1000 K Pressure 1 atm Pressure 1 atm Pathlength 50 cm Pathlength 40 cm CO2 concentration 100% CO2 concentration 5% ILS function form: triangle ILS function form: triangle -1ILS full width at half maximum: 4 cm ILS full width at half maximum: 4 cm-1 Lorentz contour Lorentz contour -1Wing length: 2 cm Wing length: 2 cm-1 Temperature 1550 K Pressure 1 atm Pathlength 50 cm CO2 concentration 1% ILS function form: triangle ILS full width at half maximum: 4 cm-1 Lorentz contour Wing length: 2 cm-1 Temperature 1550 K Pressure 1 atm Pathlength 50 cm CO2 concentration 100% ILS function form: triangle ILS full width at half maximum: 4 cm-1 Lorentz contour Wing length: 2 cm-1 Low-resolution emission spectra from [12] Temperature 1370 K Pressure 1 atm Pathlength 3.12 cm CO2 concentration 36% ILS function form: triangle ILS full width at half maximum: 5 cm-1 Lorentz contour Wing length: 2 cm-1 Temperature 1950 K Pressure 1 atm Pathlength 3.12 cm CO2 concentration 53% ILS function form: triangle ILS full width at half maximum: 5 cm-1 Lorentz contour Wing length: 2 cm-1 Temperature 1950 K Pressure 1 atm Pathlength 3.12 cm CO2 concentration 53% ILS function form: triangle ILS full width at half maximum: 2 cm-1 Lorentz contour Wing length: 2 cm-1 Temperature 2300 K Pressure 1 atm Pathlength 1.67 cm CO2 concentration 49% ILS function form: triangle ILS full width at half maximum: 5 cm-1 Lorentz contour Wing length: 2 cm-1 ii)

4.3 μm region

Medium resolution CO2 high-temperature spectra for T = 1000 and 1550 K [11]. For each region we give a plot of digitized observed transmittance taken from [11] and simulated transmittances using CDSD-HITEMP and HITEMP [10] data. Transmittances were calculated by a line-by-line code.

Temperature 1000 K Pressure 1 atm Pathlength 50 cm

CO2 concentration 100% ILS function form: triangle

ILS full width at half maximum: 4 cm-1 Lorentz contour Wing length: 2 cm-1

Temperature 1550 K Pressure 1 atm Pathlength 50 cm CO2 concentration 1% ILS function form: triangle ILS full width at half maximum: 4 cm-1 Lorentz contour Wing length: 2 cm-1 Temperature 1550 K Pressure 1 atm Pathlength 50 cm CO2 concentration 100% ILS function form: triangle ILS full width at half maximum: 4 cm-1 Lorentz contour Wing length: 2 cm-1 iii)

2.7 μm region

Medium resolution CO2 high-temperature spectra for T = 1000 and 1550 K [11]. For each region we give a plot of digitized observed transmittance taken from [11] and simulated transmittances using CDSD-HITEMP and HITEMP [10] data. Transmittances were calculated by a line-by-line code. Temperature 1000 K Temperature 1550 K Pressure 1 atm Pressure 1 atm Pathlength 50 cm Pathlength 50 cm CO2 concentration 100% CO2 concentration 100% ILS function form: triangle ILS function form: triangle -1ILS full width at half maximum: 4 cm ILS full width at half maximum: 4 cm-1 Lorentz contour Lorentz contour Wing length: 2 cm-1 Wing length: 2 cm-1 Medium resolution spectrum from [13].

Temperature 1500 K Pressure 1 atm Pathlength 7.75 cm

CO2 concentration 100% ILS function form: triangle

ILS full width at half maximum: 3 cm-1 Lorentz contour Wing length: 2 cm-1

iv)

2.0 μm region

Medium resolution CO2 high-temperature spectra for T = 1000 and 1550 K [11]. For each region we give a plot of digitized observed transmittance taken from [11] and simulated transmittances using CDSD-HITEMP and HITEMP [10] data. Transmittances were calculated by a line-by-line code. Temperature 1000 K Temperature 1550 K Pressure 1 atm Pressure 1 atm Pathlength 50 cm Pathlength 50 cm CO2 concentration 100% CO2 concentration 100% ILS function form: triangle ILS function form: triangle -1ILS full width at half maximum: 4 cm ILS full width at half maximum: 4 cm-1 Lorentz contour Lorentz contour -1Wing length: 2 cm Wing length: 2 cm-1

References

1. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson HITEMP, the High-Temperature Molecular Spectroscopic Database, JQSRT, in press

2. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov and N.N. Lavrentieva CDSD-1000, the high-temperature carbon dioxide spectroscopic databank JQSRT 82, (2003) 165-196

3. L.S. Rothman, I.E. Gordon, A. Barbe, D.Chris Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S. Mikhailenko, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, A. Predoi-Cross, V. Perevalov, A. Perrin, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, S. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera The HITRAN 2008 Molecular Spectroscopic Database, JQSRT, 110 (2009) 533–572

4. J.-L. Teffo, O.N.Sulakshina, V.I. Perevalov Effective Hamiltonian for Rovibrational Energies and Line Intensities of Carbon Dioxide, JMS, 156 (1992) 48-

5. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, L.S. Rothman, Vl.G. Tyuterev Global fitting of 12C16O2 vibrational–rotational line positions using the effective Hamiltonian approach JQSRT, 60 (1998) 785-801

6. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, VI.G. Tyuterev Global fit of 12C16O2

vibrational–rotational line intensities using the effective operator approach JQSRT, 62, (1999) 571-598

7. A.D. Bykov, N.N. Lavrentieva, L.N. Sinitsa Calculation of CO2 broadening and shift coefficients for high-temperature databases, Atmos. Oceanic Opt. 13 (2000) 1015-1019 8. J.-M. Hartmann A simple empirical model for the collisional spectral shift of air-broadened CO2 lines, JQSRT 110, (2009) 2019–2026

9. J.B. Pollack, J.B. Dalton, D. Grinspoon, R.B. Wattson, R. Freedman, D. Crisp, D.A. Allen, B. Bezard, C. DeBergh, L.P. Giver, Q. Ma, R. Tipping Near-infrared light from Venus’ nightside: a spectroscopic analysis, Icarus, 103, (1993) 1-42

10. L.S. Rothman, R.B. Wattson, R.R. Gamache, J. Schroeder, A. McCann HITRAN,

HAWKS and HITEMP High-Temperature Molecular Database. Proc Soc Photo-Optical Instrumentation Engineers 2471 (1995) 105-111

11. S.P. Bharadwaj, M.F. Modest Medium resolution transmission measurements of CO2 at high temperature - an update. JQSRT 103 (2007) 146-55

12. C.B. Ludwig, C.C. Ferriso, L. Acton High-Temperature Spectral Emissivities and Total Intensities of the 15-μ Band System of CO2 JOSA 56 (1966) 1685-1692

13. D. Scutary, L. Rosenmann, J. Taine Approximate intensities of CO2 hot bands at 2.7, 4.3, and 12 μm for high temperature and medium resolution applications JQSRT 52, (1994) 765–781

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- obuygou.com 版权所有 赣ICP备2024042798号-5

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务