浙教版八年级上册数学期中难题复习
一、选择
1. 小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标
能配一块与原来大小一样的三角形玻璃
?应该带
去.
, , , ),你认为将其中的哪一块带去,就
A. 第 块 B. 第 块
C. 第 块
,则它的顶角是
C.
D. 第 块
2. 已知等腰三角形的一个外角等于
A.
B.
的非负整数解有
或
D. 不能确定
3. 不等式
个. B.
A.
C.
D. 无数
4. 以下列各数为边长,不能组成直角三角形的是
A. , , 5. 如图,已知
A. B. C. D.
为 为 为 为
B. , ,
,求作一点
,使 到
C. , , D. ,, ,下列确定
的两边的距离相等,且
点的方法正确的是
, , ,
两角平分线的交点 两边上的高的交点
两边的垂直平分线的交点
的垂直平分线的交点
的角平分线与
6. 下列命题中,属于假命题的是
A. 三角形中至少有一个角大于
B. 如果三条线段长分别为
, , ,那么这三条线段能组成三角形
C. 三角形的外角等于与它不相邻的两个内角的和
D. 如果一个三角形是轴对称图形,那么这个三角形一定是等腰三角形 7. 如图,在
A.
中,
,
B.
,
,若
,则
C.
的取值范围是
C. ,
的度数为
D.
8. 已知方程组:
A.
的解 , 满足 ,则 B.
D.
上找一点
9. 如图,
中,
,点 , 分别是
D.
的中点,在 ,使 最小,则这个最小值是
A. B. C.
10. 如图,
①
;
, , ,点 , 为 边上的两点,且 ,连接 , ,则下列结论:
1 / 8
②
为等腰三角形;
③ ;
④ ,
其中正确的有
个.
A.
B.
C.
D.
二、填空题
11. 在
中, , , ,在射线 上一动点 ,从点 出发,以 厘米每秒的速度匀速运动,若点 为
运动 12. 在
秒时,以 , ,
, ,则 为顶点的三角形恰为等腰三角形,则所用时间 的长 的取值范围是 ”的原理是:因为
秒. 中, .
,所以 13. 如图,用尺规作图作
“一个角等于已知角
.由这种作图方法得到的
和 全等的依据是 (写出全等判定方法的简写).
14. 直角三角形两直角边长为
和 ,则此直角三角形 无解,则
的取
斜边上的中线的长是 值范围为
. . 15. 若关于 的一元一次不等式组
16. 如图,
积是
三边的中线 .
, , 的公共点 为 ,若 ,则图中阴影部分的面
三、解答题
17. 解下列不等式(组),并把解集表示在数轴上.
(1) ;
(2) 18. 如图,在 中, . (1)用尺规在边
上求作一点 ,
,使 (不写作法,保留作图痕迹);
(2)连接
,若 时,试求点 到 边的距离.
2 / 8
19. 如图,在 中, ,取点 与点 ,使得 , ,连接 与 交于点 .求证:
(1) (2)
; . 20. 在 中, ,一边上高为 ,求底边 的长(注意:请画出图形).
21. 如图, 中, , , 的垂直平分线交 于 , 为垂足,连接 . (1)若 (2)求
,求 的度数.
长; 22. 随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为
元,
元的 A ,B 两种型号的净水器,下表是近两周的销售情况:
( 1)求 A , B 两种型号的净水器的销售单价;
( 2)若电器公司准备用不多于
元的金额采购这两种型号的净水器共 台,求 A 种型号的净水器最多能
采购多少台 ?
( 3)在( )的条件下,公司销售完这
台净水器能否实现利润为 元的目标 ?若能,请给出相应的采购
方案;若不能,请说明理由.
3 / 8
如图( ),
, , , .点 在线段 上由点
向点 运动.它们运动的时间为
. (1)若点
的运动速度与点 请说明理由,并判断此 (2)如图(
),将图
点
的运动速度为 ,是
的 , 的值;若不存在,请说明理由.
上以 的速度由点 向点 运动,同时,点 在线段
的运动速度相等,当 时,
与 是否全等,
时线段
和线段
的位置关系;
( )中的“ , ”改为“
”,其他条件不变.设
否存在实数
,使得
与
全等 ?若存在,求出相应
4 / 8
23.
答案
第一部分 1. B 6. A
2. C 7. B
3. C 8. D
4. A 9. C
5. D 10. B
第二部分
11. , ,
12.
13. 14.
15.
16. 【解析】 的三条中线 ,
, .
,
, .
.
第三部分
17.(1)当
时, , ,
又
,
在
和
中,
,
,
,
,
即线段
与线段 垂直.
( 2)①若 ,
则
, , 解得
②若 ,
则 ,
,
解得
, 交于点 ,5 / 8
综上所述,存在
或 使得 与 全等.
18. ( 1) 去分母得:去括号得:
移项得:
合并同类项得:
把 的系数化为得:
( 2)
由 得:
由 得:
不等式组的解集为:
19. ( 1) 如图,点
为所作;
( 2) ,
则 .
设
,则 , ,
在
中, ,
,解得
,
即
的长为 , 则 .
则点
到 的距离为 . 20. (1)因为, 所以 ,
所以
,
在
与
中,
6 / 8
所以 .
(2)因为 ,
所以
.
21. ( 1) 因为 垂直平分
,
所以 , 因为 , 所以
.
(2)因为 , 所以 , ,
因为 , 所以 , 因为 ,
设 ,则 , 所以 , ,
所以
.
22. 分三种情况:①当底边 边上的高为 因为在 中, ,高 ,
所以 ,
所以
;
② 当腰上的高
时,如图
所示:
则 ,
所以
,
所以 ;
③当高在
的外部时,如图 所示:
因为在 中,
,高
,
所以 , 所以 , 所以 ;
综上所述:底边
的长是 或 或 .
时,如图 所示,7 / 8
23. ( 1) 设 A ,B 两种净水器的销售单价分别为
元, 元,
依题意得:
解得:
答: A ,B 两种净水器的销售单价分别为
元, 元.
( 2) 设采购 A 种型号净水器
台,则采购 B 种型号净水器
台.
依题意得:
解得:
故超市最多采购 A 种型号净水器
台时,采购金额不多于 元.
( 3) 能,
依题意得:
解得:
故采购 A 种型号净水器
台,采购 B 种型号净水器 台,公司能实现利润
8 / 8
元的目标.