您好,欢迎来到步遥情感网。
搜索
您的当前位置:首页初中数学《分式一教学设计》教案基于学科核心素养的教学设计及教学反思

初中数学《分式一教学设计》教案基于学科核心素养的教学设计及教学反思

来源:步遥情感网


初中数学《分式一教学设计》教案基于学科核心素养的教学设计

及教学反思

基于学科核心素养的教学设计 课程名称:《分式一教学设计》 姓名 学校 教师姓名 学校名称 任教学科 教龄 初中数学 4年 教学内容分析 教学内容 分式的概念 (1)经历用分式表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感;能用分式表示实际问题中的数量关系。 (2)经历自主探索、小组合作交流的过程,归纳分式的概念,明确分式与整式的区别。进一步培养学生教学目标 代数表达能力和有条理地思考问题的能力。 (3)通过与分数的类比,探究分式有无意义的条件等活动,进一步培养学生运用类比转化的思想解决问题的能力。 (4)利用实际情境,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心。 教学重点:分式的意义、用分式表示现实情境教学重点与难点 中的数量关系。

教学难点:分式有无意义条件的讨论。 分式是继整式之后对代数式的进一步研究。与整式一样,分式也是表示具体问题情境中的数量关系的一种工具,是解决实际问题的常见模型之一。本章内容的学习为今后进一步学习函数和方程等知学科核心素养分识起到奠基的作用。《分式》这节的内容分两课时析 来完成,而第一课时的内容则是分式的起始课,它是在学生学习了整式运算、分解因式的基础上进行的,学好本节课,是今后继续学习分式的性质、分式的运算及解方式方程的前提;其中对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。 学生学情分析 学生的知识技能基础:学生在小学学过分数,其实分式是分数的“代数化”,所以其性质与运算是完全类似的。在前面的学习中学生已经学会用字母表示实际问题中的数量关系,其中包括整式与分式等数量关系。 学生的活动经验基础:在整式的学习中,学生初步具备了用整式表示现实情境中的数量关系,建立数学模型的思想。在相关的学习中学生初步具备了观察、归纳、类比、猜想的能力以及自主探索、合作交流的能力。 教学过程设计

教师活动 (一)创设情境,导入新课 (1)正n边形的每个内角为__________度。 (2)小明从家到学校有3000米,如果小明骑车每小时走a米,则小明从家到学校要走____________小时。 成 (3)某服装厂购进一批预设学生活动 设计意图 (1)让学生进一步经历探索实际问题中的数量关系的过程;通过问学生在课堂练习本上完题情景,让学生初步感受学生先自主完成,然后分式是解决问题的一种面料,共用了n元,已知这在小组内讨论 批面料共生产了m件上衣,那么这批上衣每件的面料成本为_______________元。 (4)春晖小学组织学生a人、老师b人参观博物馆,如果博物馆的门票成人价为5元/人、学生价为2元/人,那么他们买门票需付_________元,平均每人_________________元。 (5)有两块棉田,有一

加深对分式定义的理解 模型;体会分加深对分式的理解 发散学生的思维 检验学生的学习情况 学生来总结 式的意义,发展符号感. (2)因课本上的引例太难且设问方式(等量关系)不直接指向本课核心,故改用这6个铺垫性

块x公顷,收棉花m千克,第二块y公顷,收棉花n千克,这两块棉田平均每公顷的棉产量是__________千克。 (6)文林书店库存一批图书,其中一种图书的原价是每册a元,现降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是__________________元。 (二)自主探究 1、问题:认真观察上面的式子,它们还是整式吗?它们有什么共同特点? 期望得到:都有一个分数线(表示除法); 分子、分母都是整式; 分母中都有含有分母. 如果部分学生有困难,

的情景问题. 让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念. 加深对概念的理解 (1)通过求分式的值,将“代数化”了的分式还原为分数。 (2)通过与分数类比,明确分式有无意义的条件。 (3)学习“分式的值为

就安排小组讨论,也可以让有困难的学生看书. 师生共同学习: 整式A除以整式B,可以表示成/的形式,如果除式B中含有分母,那么称/为分式(fraction),其中A称为分式的分子,B称为分式的分母。 师生分析知识本质: ①概念理解:分式就是两个整式的商; ②概念要点:分式的分母中含有字母. 2、练一练: 下列各项那些时整式,那些是分式? / / (三)例题讲解: (1)当a=1,2时,分别求出分式/的值;

零”既强化了“分式有意义”的意识,又解决“分式求值”问题中的典型问题. (4)意在培养学生的转化思想。 (1)巩固练习,内化新知,既强化整式与分式的区别,又对分式有无意义的条件更加明确。 (2)让学生体会分式的意义,知道如果/的取

(2)当a取何值时,分式/有意义? (3)a取何值时,分式/的值为0? 归纳:分式有无意义的条件: (1)分式/有意义的条件:分母___________零,即B___0/分式/有意义。 (2)分式/无意义的条件:分母___________零,即B___0/分式/无意义 分式/的值等于零的条件: 分子的值_______零,分母的值________零,即A____0,B______0/分式/=0 (四)应用新知,练一练 1、下列各式中,哪些是整式?哪些是分式? /,/,/,/

值使的分母的值为零,则分式没有意义,反之有意义. (1)设计具有一定挑战性的问题和开放性联想题,鼓励学生大胆创新。 (2)发现特定条件下分式恒有意义及分式问题的考虑,必须在保证分式有意义的前提下进行。 及时反

2、设A、B都是整式,若/表示分式,则() A.A、B中都必须含有字母B.A中必须含有字母 C.B中都必须含有字母D.D、B中都不必须含有字母 3、当/取什么值时,下列分式有意义? (1)/(2)/ 4、当x__________时,分式/无意义;当x__________时,分式/无意义。 5、当/取什么值时,下列分式的值为0? (1)/(2)/ 6、要使分式/有意义,则x必须满足的条件为_______________。 (五)拓展创新 1、函数/的自变量x的

馈,便于掌握学生学习情况。激励性的评价,有利于激发学生学习的兴趣和信心。 让学生畅所欲言,大胆谈自己的收获和感想,鼓励和引导学生发现和挖掘新事物。

取值范围是() A./B./C./D./ 2、要使分式/有意义,/的取值范围是() A./B./C./±1D.任意实数 3、当x__________时,分式/的值为0 4、把甲、乙两种饮料按质量比x:y混合在一起,可以调制成一种混合饮料.调制1千克这种混合饮料需多少甲种饮料? 5、一水果店购进一箱橘子需要a元,已知橘子与箱子的总质量为mkg,箱子的质量为nkg,为了不亏本,这箱橘子的零售价至少应定为多少元?6、已知分式/,当/时,分式无意义;当/时,分式的值为0,请求出/的值。 (六)评价反馈——小

测 1、下列各式是分式的是() A./B./C./D./ 当x__________时,分式/有意义。 3、当x__________时,分式/无意义。 4、当x__________时,分式/的值为0。 5、当x__________时,分式/的值为0。 (七)自我小结 谈一谈,你这一节课有哪些收获?你还有什么疑惑吗? 板书设计 1、分式的意义:整式A除以整式B,可以表示成的形式,如果除式B中含有分母,那么称为分式,其 中A称为分式的分子,B称为分式的分母。 2、分式有无意义的条件: 1)分式有意义的条件:分母不等于零,即B≠0分式有意义。

2)分式无意义的条件:分母等于零,即B=0分式无意义 3、分式的值等于零的条件: 分子的值等于零,分母的值不等于零,即A=0,B≠0分式=0 教学反思 1、以贯彻新课程理念为前提,从学生的认知特点出发,通过创设问题情境,引导学生观察、类比、联想已有的知识经验,归纳、总结新的知识等一系列活动,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中。 2、通过对分式有无意义的条件的探究,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣和自信心,引发内在的学习动力。 3、通过对开放性问题,拓展创新题设计,实现“不同的人在数学上得到不同的发展”。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- obuygou.com 版权所有 赣ICP备2024042798号-5

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务