17.1.2 反比例函数的图象和性质
教学目标
1.知识与技能
会画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.能用反比例函数的定义和性质解决实际问题.
2.过程与方法
通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.
3.情感、态度与价值观
由图象的画法和分析,体验数学活动中的探索性和创造性,感受数学美,并通过图象的直观教学激发学习兴趣.
教学重点难点
重点:反比例函数图象的画法及探究,反比例函数的性质的运用.
难点:反比例函数图象是平滑双曲线的理解及对图象特征的分析.
课时安排 2课时
第1课时
(一)创设情境,导入新课
问题:1.若y=是反比例函数,则n必须满足条件 n≠或n≠-1 .
2.用描点法画图象的步骤简单地说是 列表 、 描点 、 连线 .
3.试用描点法画出下列函数的图象:(1)y=2x; (2)y=1-2x.
(二)合作交流,解读探究
问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,那么反比例函数y=(k为常数且k≠0)的图象是什么样呢?
尝试 用描点法来画出反比例函数的图象.
画出反比例函数y=和y=-的图象.
解:列表
x | … | -6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y= |
|
| -1 |
| -1.5 | -2 |
| -6 |
| 3 |
|
| 1 |
|
y=- |
| 1 | 1.2 |
|
| 3 | 6 |
|
|
| -1.5 |
|
|
|
(请把表中空白处填好)
描点,以表中各对应值为坐标,在直角坐标系中描出各点.
连线,用平滑的曲线把所描的点依次连接起来.
探究 反比例函数y=和y=-的图象有什么共同特征?它们之间有什么关系?
做一做 把y=和y=-的图象放到同一坐标系中,观察一下,看它们是否对称.
归纳 反比例函数y=和y=-的图象的共同特征:
(1)它们都由两条曲线组成.
(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).
(3)反比例函数的图象属于双曲线(hyperbola).
此外,y=的图象和y=-的图象关于x轴对称,也关于y轴对称.
做一做 在平面直角坐标系中画出反比例函数y=和y=-的图象.
交流 两个函数图象都用描点法画出?
【分析】 由y=和y=-的图象及y=和y=-的图象知道,
(1)它们有什么共同特征和不同点?
(2)每个函数的图象分别位于哪几个象限?
(3)在每一个象限内,y随x的变化而如何变化?
猜想 反比例函数y=(k≠0)的图象在哪些象限由什么因素决定?在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?
【归纳】 (1)反比例函数y=(k为常数,k≠0)的图象是双曲线.
(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y值随x值的增大而减小.
(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y值随x值的增大而增大.
(三)应用迁移,巩固提高
例题 指出当k>0时,下列图象中哪些可能是y=kx与y=(k≠0)在同一坐标系中的图象 ( )
【分析】 对于y=kx来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选B.
【答案】 B
备选例题
1.(2005年中考·泉州)请你写出一个反比例函数的解析式,使它的图象在第一、三象限.
A.y=x B.y= C.y=x2 D.y=
(四)总结反思,拓展升华
1.画反比例函数的图象.
2.反比例函数的性质.
3.反比例函数的图象在哪个象限由k决定,且y值随x值变化只能在“每一个象限内”研究.
(五)课堂跟踪反馈
夯实基础
1.已知反比例函数y=的图象如图所示,则k > 0,在图象的每一支上, y值随x的增大而 减小 .
2.下列图象中,是反比例函数的图象的是 (D)
3.(2005年中考·东营)在反比例函数y=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1>x2>0,则y1-y2的值为 (A)
(A)正数 (B)负数 (C)非正数 (D)非负数
提升能力
4.(2005年中考·苏州)已知反比例函数y=的图象在第一、三象限内,则k的值可是________(写出满足条件的一个k值即可).
【答案】 略
5.在直角坐标系中,若一点的横坐标与纵坐标互为倒数,则这点一定在函数图象上 y= (填函数关系式).
6.若一次函数y=kx+b的图象经过第一、二、四象限,则反比例函数y=的图象一定在 二、四 象限.
开放探究
7.两个不同的反比例函数的图象是否会相交?为什么?
【答案】 不会相交,因为当k1≠k2时,方程=无解.
8.点A(a,b)、B(a-1,c)均在反比例函数y=的图象上,若a<0,则b < c.
第2课时
(一)创设情境,导入新课
老师在黑板上写了这样一道题:“已知点(2,5)在反比例函数y=的图象上,试判断点(-5,-2)是否也在此图象上.”题中的“?”是被一个同学不小心擦掉的一个数字,请你分析一下“
Copyright © 2019- obuygou.com 版权所有 赣ICP备2024042798号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务