2009~2010学年度第一学期八年级数学教案
主备人:梁亚利
2.3 立方根
学习目标:
1.了解立方根的概念,会用根号表示一个数的立方根.
2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.
3.了解立方根的性质.
4.区分立方根与平方根的不同.
教学重点:
立方根的概念.
教学难点:
1.正确理解立方根的概念.
2.会求一个数的立方根.
3.区分立方根与平方根的不同之处.
教学方法:
类比学习法.
教学过程:
Ⅰ.新课导入
上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=±.
若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?
Ⅱ.新课
(一)出示学习目标
(二)新课讲解
1.立方根的定义
我们知道,2的立方是8,3的立方的27,我们把2和3给取个名字叫立方根。
.板书:若x的平方等于a,则x叫a的平方根,记作x=±,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=±,读作x等于正、负三次根号a,简称x等于正、负根号a.
2.立方根的性质
让学生分组讨论课本44页的“做一做”和“议一议”
强调立方根的表示
板书:
.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.
3.开立方的定义
求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.
4.平方根与立方根的区别与联系.
平方根与立方根的联系与区别. 联系: (1)0的平方根、立方根都有一个是0. (2)平方根、立方根都是开方的结果. 区别: (1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“如果一个数的立方等于a,这个数就叫做a的立方根.” (2)个数不同:一个正数有两个平方根,一个正数有一个立方根;一个负数没有平方根,一个负数有一个立方根. (3)表示法不同xkb1.com 正数a的平方根表示为±,a的立方根表示为. (4)被开方数的取值范围不同 ±中的被开方数a是非负数;中的被开方数可以是任何数. |
(三)例题讲解
讲解例1(用立方根的定决)
讲解时可以让学生先口述,再演示课件。
完成课本”想一想”.
表示a的立方根,则()3等于什么?等于什么?
大家可以先举例后找规律.: ()3=a.
(∵a3是a的立方,所以a3的立方根就是a,所以=a.)
讲解例2
(四)课堂练习
(五)本节小结并布置作业
教学反思:本节的内容最好在学生熟练掌握平方根的内容的前提下进行。这样就能让学生用类推的方法得出立方根的相关结论。回容易理解与掌握。从学生上课的反映来看,这节课应该是比较成功的。
Copyright © 2019- obuygou.com 版权所有 赣ICP备2024042798号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务