课题:《11.3角的平分线的性质》(1)导学案 NO.07
班级_______姓名 _____小组____ 小组评价_____教师评价
使用说明:学生利用自习先预习课本第19页探究-第21页思考前10分钟,然后35分钟做完学案。正课由小组讨论交流10分钟,25分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。
【学习目标】
1、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.
2、能运用角的平分线性质定理解决简单的几何问题.
3、极度热情、高度责任、自动自发、享受成功。
教学重点:掌握角的平分线的性质定理
教学难点: 角平分线定理的应用。
【学习过程】
1、复习思考
什么是角的平分线?怎样画一个角的平分线?
2.如右图,AB=AD,BC=DC, 沿着A、C画一条射线AE,AE就是∠BAD的角平分线,你知道为什么吗
3.根据角平分仪的制作原理,如何用尺规作角的平分线?自学课本19页后,思考为什么要用大于MN的长为半径画弧?
4.OC是∠AOB的平分线,点P是射线OC上的任意一点,
| PD | PE |
第一次 |
|
|
第二次 |
|
|
第三次 |
|
|
5、命题:角平分线上的点到这个角的两边距离相等.
题设:一个点在一个角的平分线上
结合第4题图形请你写出已知和求证,并证明命题的正确性
解后思考:证明一个几何命题的步骤有那些?
6、用数学语言来表述角的平分线的性质定理:
如右上图,∵OC是∠AOB的平分线,点P是
∴
二、合作探究
1、如图所示OC是∠AOB 的平分线,P 是OC上任意一点,问PE=PD?为什么?
三、学以致用
在Rt△ABC中,BD平分∠ABC, DE⊥AB于E,则
⑴图中相等的线段有哪些?相等的角呢?
⑵哪条线段与DE相等?为什么?
⑶若AB=10,BC=8,AC=6,求BE,AE的长和△AED的周长。
四、当堂检测
如图,在△ABC中,AC⊥BC,AD为∠BAC的平分线,DE⊥AB,AB=7㎝,AC=3㎝,求BE的长
五、课堂小结
这节课你有什么收获呢?与你的同伴进行交流
六、作业:
第22页习题11.3 1-2 第23页第4-5题
Copyright © 2019- obuygou.com 版权所有 赣ICP备2024042798号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务