函数的曲线具有凹凸的性质,一般来说,当曲线凹凸性质发生改变的临界点就是拐点。这应该算是几何的定义方法。而几何的定义不是很方便,所以引入高数的定义,用函数的二阶导数来定义凹凸性,二阶导数与0的关系来对应函数的凹凸性。假定函数二阶导数在每个点都存在,那么当该点的二阶导数为0,且两侧的二阶导数异号,是很方便,所以引入高数的定义,用函数的二阶导数来定义凹凸性,二阶导数与0的关系来对应函数的凹凸性。假定函数二阶导数在每个点都存在,那么当该点的二阶导数为0,且两侧的二阶导数异号,则该点为拐点。拐点的是否,关键在于该点两侧的凹凸性是否改变,对于该点的二阶导数无直接关系,是两侧二阶导数异号的点。
Copyright © 2019- obuygou.com 版权所有 赣ICP备2024042798号-5
违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务